
Simulating the Evolution of Clone-and-Own Projects with
VEVOS

Alexander Schultheiß
Humboldt University of Berlin

Germany
schultha@informatik.hu-berlin.de

Paul Maximilian Bittner
University of Ulm

Germany
paul.bittner@uni-ulm.de

Sascha El-Sharkawy
University of Hildesheim

Germany
elscha@sse.uni-hildesheim.de

Thomas Thüm
University of Ulm

Germany
thomas.thuem@uni-ulm.de

Timo Kehrer
University of Bern

Switzerland
timo.kehrer@inf.unibe.ch

ABSTRACT
In clone-and-own development, new variants of a software system
are typically created by manually copying and adapting an existing
variant. This approach is flexible but suffers from various challenges
such as high maintenance cost in the long term. While researchers
started to address the challenges of clone-and-own, there is yet little
empirical evidence on the efficiency and effectiveness of clone-and-
own research. The main reason for this is the lack of appropriate
benchmarks, which need to expose a multitude of different data
and meta-data serving as input and ground truth for experimental
evaluations. We present VEVOS, a benchmark generation framework
that picks up these requirements and, given the version history of
a software product line, enables the simulation of the evolution of
cloned variants, and provides meta-data serving as ground truth.

CCS CONCEPTS
• Software and its engineering→ Software configurationman-
agement and version control systems.

KEYWORDS
Clone-and-own, software product lines, experimental subjects,
benchmarks, empirical evaluation

ACM Reference Format:
Alexander Schultheiß, PaulMaximilian Bittner, Sascha El-Sharkawy, Thomas
Thüm, and Timo Kehrer. 2022. Simulating the Evolution of Clone-and-
Own Projects with VEVOS. In The International Conference on Evalua-
tion and Assessment in Software Engineering 2022 (EASE 2022), June 13–
15, 2022, Gothenburg, Sweden. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3530019.3534084

1 INTRODUCTION
Variability is a key requirement for today’s software tomeet varying
customer expectations or enable mass-customization. The state-
of-practice in engineering multi-variant software systems often

This work is licensed under a Creative Commons Attribution International
4.0 License.

EASE 2022, June 13–15, 2022, Gothenburg, Sweden
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9613-4/22/06.
https://doi.org/10.1145/3530019.3534084

follows a simple pattern: The development starts with a single vari-
ant and further variants are added later by copying and adapting
an existing variant; a principle which is generally known as clone-
and-own [3, 12, 45, 51]. While clone-and-own has the short-term
benefits of minimal cost and time-to-market, it causes high main-
tenance costs in the long run [3, 12, 31, 51]. For example, when
fixing a bug in one variant, it is unknown which other variants are
affected by the same bug and thus need to be fixed accordingly.

Given these practical experiences, a more recent line of research
focuses at better supporting clone-and-own [8, 11, 19, 21, 24, 31, 34,
37, 39, 48]. Clone-and-own research focuses on developing methods
and tools with the ultimate goal of either migrating a clone-and-
own project to a software product line, or systematically supporting
clone-and-own development through better automation. For exam-
ple, the identification of common and individual parts of cloned
variants [13, 16] (aka. variablity extraction) serves as a prepara-
tory step for migration, while tracing features to development arti-
facts [2, 8, 19] (aka. feature trace recording) serves as a foundation
for automatically synchronizing cloned variants [24].

To date, however, there is little empirical evidence on the ef-
ficiency and effectiveness of such clone-and-own support when
applied to real-world projects. The main reason for this is the lack
of appropriate benchmarks [50], which must expose a multitude of
different data and meta-data. For example, next to the source code
of a set of cloned variants serving as input, the empirical evaluation
of variability extraction [13, 16] also requires a code matching as
ground truth, linking corresponding code entities among variants.
Likewise, an empirical evaluation of feature trace recording [2, 8, 19]
requires the condition under which each code artifact is included
in a variant (aka. presence condition) at each revision.

Existing benchmarks and study subjects are hardly applicable
to empirically evaluate clone-and-own support [50]. On the one
hand, real-world clone-and-own projects lack the required meta-
data that can serve as ground truth because cloned variants are
created ad-hoc. The manual reverse engineering of these meta-data
as proposed by Stănciulescu et al. [51] is tedious, prone to errors,
and even infeasible for the entire development history of a larger
project. On the other hand, one could use the history of a software
product line for generating suitable benchmarks. However, for the
two real-world software product lines which have been most widely
used for the sake of empirical evaluation in the area of product-
line testing and analysis, namely Linux [15, 25, 28, 33, 42] and

231

https://doi.org/10.1145/3530019.3534084
https://doi.org/10.1145/3530019.3534084
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3530019.3534084
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3530019.3534084&domain=pdf&date_stamp=2022-06-13

EASE 2022, June 13–15, 2022, Gothenburg, Sweden Schultheiß, et al.

BusyBox [17, 25, 30, 32, 43], the product-line’s feature model and
presence conditions are hidden behind the build system and pre-
processor macros. Feature model and presence conditions must
be automatically reverse engineered, and transferred into variant-
specific data and meta-data.

In this paper, we present a benchmark generation framework
called VEVOS (Variant EVOlution Simulation) that solves these tech-
nical and conceptual challenges (cf. Sec. 5). VEVOS enables to simu-
late the evolution of clone-and-own projects which can be used as
benchmarks for empirical research. To the best of our knowledge,
the generated benchmarks are the first ones that provide all the re-
quired data and meta-data across the history of an evolving project
(cf. Sec. 3). Thereby, we pave the way for collecting empirical evi-
dence on the efficiency and effectiveness of clone-and-own support.
We demonstrate the feasibility of our approach by instantiating
VEVOS for Linux and BusyBox (cf. Sec. 6).

2 MULTI-VARIANT SOFTWARE SYSTEMS
Software Product Lines. A software product line is a set of similar
software variants (aka. products) with well-defined commonalities
and variability, developed based on a common code base. Software
product-line engineering is distinguished into domain engineering
and application engineering [4, 9, 44].

Domain engineering is concerned with the specification and im-
plementation of the conceptual features comprised by a product
line. Typically, a feature model [5, 9] defines the set of features and
their valid combinations (aka. configurations) by specifying their
constraints. The specified features are then implemented in a com-
mon code base by choosing a variation mechanism which specifies
which code belongs to which features. One widely used mechanism
are C-preprocessor macros (e.g., #if, #ifdef, and #ifndef) that
are embedded into source files and determine which lines of code
are included when compiling the file, thereby dividing the code
into blocks with individual block conditions. By nesting code blocks,
annotations implement interactions between features, meaning that
code is included or excluded if specific combinations of block condi-
tions are fulfilled. Next to code annotations, build files may contain
file conditions that in- or exclude entire source files into or from
compilation [4]. Such compositions of block and file conditions are
known as presence conditions of code [4].

Application engineering refers to the generation of a variant based
on a valid configuration. Given such a configuration, the product-
line’s build system can derive a corresponding variant from the
common code base by interpreting the presence conditions.

Clone-and-Own. Software projects in practice often rely on
an alternative approach to developing multi-variant systems: clone-
and-own development. The clone-and-own workflow is as easy as
copying and adapting existing variants. Fig. 1 presents an example
of a project with three variants. For the sake of the example, we
highlight code implementing specific features, but note that this
information is usually not available. An existing variant, called V0,
is cloned by branching and extended by the implementation of
the feature Debug to form a new variant V1. Later, V1 is branched
to yield variant V2. Both V1 and V2 undergo further changes such
that they eventually implement the features Network and Print,
respectively. In parallel, V0 has also evolved by editing code that

V2

1 int x = foo();
2 int status = calculate(x);
3 int reply = call(x);
4 log(status, reply);
5 log(x);

1 int x = foo();
2 int status = calculate(x);
3 log(x);

V1

1 int x = foo();
2 int status = calculate(x);
3 print(status + x);
4 log(x);

1 int x = foo();
2 int status = calculate(x);
3 log(x);

1 int x = foo();

V0
1 int x = foo();

1 int x = foo();
2 execute(x, 0);

clone

clone

1 int x = foo();
2 execute(x, 2);

Print

Network

Debug

Features:

Figure 1: Clone-and-own project with three variants.

does not belong to a particular feature. Thus, the edit still has to be
propagated to variants V1 and V2.

While, from a short-term perspective, clone-and-own develop-
ment is more flexible than introducing a software product line, it
suffers from maintenance problems in the long run [3, 12, 31, 51].
Clone-and-own research tries to address the challenges of clone-
and-own and different approaches have been proposed over the
years. The approaches range from the systematic support of clone-
and-own development (with the aim of reducing maintenance
costs) [8, 11, 19, 24, 31, 34, 48] to techniques that support the mi-
gration of a set of variants into an integrated platform (with the
aim of eliminating duplicated code) [11, 21, 39]. To evaluate these
approaches, suitable benchmarks are required.

3 PROBLEM STATEMENT
Benchmark Requirements. Based on our own experience, we
found several requirements for a benchmark to be suitable for the
evaluation of clone-and-own research. In any case, we need (i) the
source code of a set of variants exposing commonalities and differ-
ences due to implementing different combinations of a common set
of features. More specifically, we not only need a single snapshot
of these variants, but (ii) a version history that represents their par-
allel evolution. In addition, we often need a multitude of different
meta-data serving as additional input or ground truth for empirical
evaluation. This includes, for every snapshot in the history of a
set of cloned variants, (iii) a feature model that captures the space
of valid configurations; (iv) the configuration of each individual
variant, (v) presence conditions for the code of each individual vari-
ant, and (vi) a matching that identifies the corresponding source
code entities among all variants. We summarize (iv) and (v) by the
notion that cloned variants need to be feature-aware.

The Current State of Benchmarks. Similar requirements and
an evenmore detailed analysis of individual evaluation scenarios are
presented by Strüber et al. [50]. In a recent survey on benchmarks
for the empirical evaluation of techniques, they found that the
overall applicability of existing benchmarks is low, and that certain
scenarios that are considered particularly relevant (e.g., variant
synchronization) have no applicable benchmark at all.

The Quest for Benchmark Generation.With the goal of gen-
erating suitable benchmarks from the history of a software product
line, we considered the ESPLA catalog [35], a large collection of
case studies from the field of extractive software product-line re-
search. However, we found that only few subject systems fulfill

232

Simulating the Evolution of Clone-and-Own Projects with VEVOS EASE 2022, June 13–15, 2022, Gothenburg, Sweden

the prerequisites of benchmark generation. As of January 2022, the
catalog comprises a total of 135 case studies of which 45 comprise
publicly available subjects. After considering the requirement of
the subjects comprising source code with commonalities and dif-
ferences, only 27 studies remain. Only three of these studies come
with a source code history: the Linux kernel, Busybox, and uClibc.

However, the remaining three subjects are preprocessor-based
software product lines without an explicit feature model and ex-
plicit presence conditions (i.e., presence conditions are only given
implicitly through the nesting of annotated code blocks). Thus,
extracting a ground truth requires additional tooling.

Ground Truth Extraction. We can employ static product-line
analyses to extract a ground truth from a software product line. For
example, considering annotation-based product lines, information
about the variability such as block conditions, presence conditions,
and feature models can be extracted and analyzed. A feature model
can be extracted from the build system by analyzing which features
are defined and which constraints exist between them.

Yet, a software product line, its presence conditions, and its
feature model do not constitute a benchmark. A benchmark also
requires the source code of variants to be feature-aware, and a
matching between the variants’ source code entities.

Variant Generation. The build systems of real-world subject
systems (e.g., Kbuild used in Linux and BusyBox) are not designed
to derive the source code of a variant. Considering C-preprocessor-
based product lines, one could consider to make use of the prepro-
cessor to resolve the variability defined by its macros. Executing the
C-preprocessor to derive a variant is infeasible, because all macros
are resolved – even the ones that do not correspond to variability
such as #include statements. The results are source files bloated to
several times their original size. Such source files hardly correspond
to real clone-and-own variants, in which modularization of source
code into several files is kept intact.

A solution to this problem could be provided by partial prepro-
cessors such as cppp1 or coan,2 which resolve only specified macros.
Nevertheless, the problem of feature-awareness of variants remains:
Each variant has a different subset of the product line’s code, thus
the presence conditions of the product line do not align with a
variant’s source code, and cannot be used as ground truth for a
variant. A benchmark requires variant-specific presence conditions.

4 RELATEDWORK
Benchmarks. As discussed in Sec. 3, Strüber et al. [50] found
existing benchmarks to have low applicability to clone-and-own
research. Most of these benchmarks either lack a version history [23,
29, 36], or comprise only few isolated versions [1, 38, 46, 52]. The
DoSC [53] dataset comprises no variants, but only histories of
independent subject systems. Berger et al. [7] collected a set of
128 feature models from open-source projects, lacking source code
and presence conditions. Lastly, the ClaferWebTools benchmark
comprises academic projects developed by students [19].

A more recent benchmark by Michelon et al. [40] targets the
evolution of systems in time and space [49] (i.e., version history
and existing configurations). There are two classes of variant sets

1https://www.muppetlabs.com/~breadbox/software/cppp.html
2http://coan2.sourceforge.net/index.php?page=about

in their benchmark: Sets addressing evolution in space and sets
addressing evolution in time. However, the provided ground truth
has no feature model and contains only partial presence conditions;
they resolve the nesting of block conditions but lack file conditions.

Ground Truth Extraction. GOLEM [10], is an analyzer for
variability-related bugs in software. GOLEM probes the build sys-
tem with build requests for each feature and then determines
which files would have been included [10]. However, GOLEM
thereby requires more than 90 minutes to process a single ver-
sion of Linux [10], rendering the extraction of a representative
range of versions infeasible (i.e., several thousand commits).

TypeChef [22] is a variability-aware parser developed for static
type checking of variable code. However, TypeChef expands pre-
processor macros not related to variability, thereby expanding the
source files to several times their size by resolving #includemacros,
no longer representing realistic source code.

KernelHaven [27] is an experimentation workbench for static
software product line analyses (e.g., the detection of feature ef-
fects [41] or the calculation of code metrics [14]). KernelHaven
follows a modular design relying on plugins that are responsible
for extracting and analyzing knowledge about a product line; there
are plugins for extracting block conditions, presence conditions of
files, and feature models. While KernelHaven was built to analyze
only isolated versions of a system, its plugin infrastructure was
designed to be extendable. We thus utilize the available extraction
capabilities by extending KernelHaven and integrating it into VEVOS.

5 BENCHMARK GENERATIONWITH VEVOS
To address the lack of benchmarks, we propose VEVOS: a framework
for the generation of benchmarks that can be used for the evalua-
tion of techniques supporting multi-variant system development. In
this work, we instantiate VEVOS for Busybox and Linux, while its
framework infrastructure allows to support further product lines
in the future. Because extracting a ground truth takes consider-
ably more time than simulating variants, VEVOS is divided into two
modules, the ground truth extraction (cf. Sec. 5.1) and the variant
simulation (cf. Sec. 5.2).

5.1 Ground Truth Extraction
An overview of VEVOS’ ground truth extraction is shown in Fig. 2.
The extraction of VEVOS internally relies on theKernelHaven frame-
work [27, 47] but (1) extends it with a new plugin to analyze pres-
ence conditions, and (2) wraps KernelHaven within new services to
process the entire history of the input product line.

First, the required environment is prepared in a Docker con-
tainer (0), such that the ground truth extraction can be executed
on any system supporting Docker. After preparation, the caller of
the extraction specifies a range of revisions that should be con-
sidered. For this specified range, the version-control system (VCS)
service retrieves all revisions in the range (1); The VCS service is
responsible for managing the product line’s repository (e.g., check-
out revisions), and it cleans the product line’s files after presence
conditions and a feature model have been extracted. Starting from
the first commit in the commit range, the VCS service iteratively
conducts a checkout of each revision (1).

233

https://www.muppetlabs.com/~breadbox/software/cppp.html
http://coan2.sourceforge.net/index.php?page=about

EASE 2022, June 13–15, 2022, Gothenburg, Sweden Schultheiß, et al.

SPL
Repository

Code extractor

Build extractor

Model extractor

VCS
service

Artifacts at
revision r0

c0

c-1

c-2

Dataset
service

KernelHaven

KernelHaven
service

Presence
conditions

Feature
model

0

-1
Ground

truth

Ground
truth

Ground truth dataset

Ground truth
of r0

manages

executes
reads from

writes to

File system

Docker container
Data �ow Action

Legend

(1)

(2)

(4)

(5)

<< prepares environment (0) >> << analyzes artifacts (3) >>

r

r

Presence
condition
analysis

Figure 2: Overview of the ground truth extraction of VEVOS.

For each revision, our KernelHaven service is responsible for the
configuration and execution of KernelHaven which analyzes the
artifacts (3) to extract the presence conditions and featuremodel (i.e.,
the ground truth) of the current revision. The code model extractor
analyzes variability in the source code files yielding code blocks
and their respective block conditions (cf. Sec. 2). The build model
extractor determines the presence condition of each source file by
analyzing the build files of the product line. The feature model
extractor collects features and constraints defined by the build
system. Based on the extractors’ output, our presence condition
analysis determines the code’s presence conditions by combining
block conditions with the file conditions of source files.

Once presence conditions and a feature model have been ex-
tracted, our dataset service collects (4) and packages (5) them into
an archive that is added to the ground truth dataset. The dataset
comprises a ground truth for each processed revision. It thereby
reflects the evolution of the product line over time, and can be used
to simulate the evolution of clone-and-own variants.

5.2 Variant Simulation
The variant simulation is a library for simulating the evolution of
clone-and-own variants based on a ground truth dataset and the
repository of the corresponding software product line, thereby pro-
viding benchmarks for clone-and-own research. As shown in Fig. 3,
the library offers three core functionalities: The loading of a ground
truth dataset, the sampling of variant configurations from a feature
model, and the generation of feature-aware variants.

First, the dataset loading component exposes convenience meth-
ods for loading the various types of data and thus provides access
to the ground truth when evaluating clone-and-own research.

Second, the configuration sampling component offers function-
ality for deriving configurations from feature models. The configu-
ration sampling component offers different sampling strategies, for
example, random sampling for each revision, or using a predefined
set of configurations. Internally, the library calls the FeatureIDE-
library [26], which contains a variety of functionality for dealing
with feature models, e.g., import and export of models, and the
generation of valid configurations for a given model.

Third, the variant generation derives feature-aware variants.
Each feature-aware variant comprises source code, the variant’s

configuration (i.e., the list of features that it implements), presence
conditions mapped to the code, block and file conditions (aka. fea-
ture mappings), and a matching of the variant’s code to the product
line’s code (i.e., line numbers are matched).

In summary, VEVOS fulfills all requirements to benchmarks dis-
cussed in Sec. 3: Researchers can use the variant simulation library
to generate benchmarks based on a ground truth dataset; these
benchmarks comprise the evolution of feature-aware variants for a
desired range of revisions; and feature-aware variants comprise the
required data and meta-data to evaluate clone-and-own approaches.
By providing the sampled configurations and extracted ground
truth dataset in their replication package, researchers can comply
to open science principle, making their research results replicable
and comparable to others.

6 VALIDATION OF TECHNICAL FEASIBILITY
In this section, we validate the technical feasibility of generating
suitable clone-and-own benchmarks with VEVOS, We implemented
VEVOS in two separate projects (i.e., extraction3 and simulation4).

6.1 Ground Truth Extraction
We validate the extraction’s feasibility by executing it for the histo-
ries of Linux and BusyBox.5

Extraction Setup. We select the following three extractor plu-
gins used in KernelHaven: CodeBlockExtractor for extracting a code
model by retrieving code blocks through parsing preprocessor
macros (see Sec. 3), KbuildMinerExtractor for extracting a build
model by analyzing the build process of files in Kbuild with kbuild-
miner [6], and KconfigReaderExtractor for extracting a variability
model by detecting existing features and constraints between them
with KConfigReader [20]. CodeBlockExtractor was recommended
by KernelHaven’s developers; while the KbuildMinerExtractor and
KconfigReaderExtractor plugins are currently the only publicly avail-
able build and feature model extractors.

Validation Results. For BusyBox, we ran the ground truth ex-
traction for the entire version history and were able to extract a

3https://github.com/VariantSync/VEVOS_Extraction
4https://github.com/VariantSync/VEVOS_Simulation
5System: i7-8700K @3.70Ghz CPU; 32 GB DDR4 RAM; 1TB M.2 SSD

234

https://github.com/VariantSync/VEVOS_Extraction
https://github.com/VariantSync/VEVOS_Simulation

Simulating the Evolution of Clone-and-Own Projects with VEVOS EASE 2022, June 13–15, 2022, Gothenburg, Sweden

Ground truth
dataset

Con�guration
sampling

Variant
generation

Dataset
loading

File
utility Source

�les
Con�guration

Presence conditions

Code
matching

foo/bar, 1, 15, CONFIG_CT
foo/bar, 3, 7, CONFIG_DESK
...

foo/bar, 1, 1
foo/bar, 2, 5
...

Ground truth

Feature-aware variant 1

...

Variant simulation library

Your research prototype
Data �ow API call Feature-aware variant 2

SPL
Repository

Artifacts at
revision r0

c0

c-1

c-2

Figure 3: Overview of the variant simulation library of VEVOS.

ground truth for 5,605 of the most recent commits; more specifi-
cally all commits in the range 50239a665c88f5a9 to b276e41835161234,
which was introduced on the 22nd of August 2010. The extraction
took roughly one day for the entire history.

For Linux, running the ground truth extraction requires consid-
erable time. We decided to validate the extraction on a subset of
the commits as follows: First, we ran the extraction once for each
major version (i.e., v1-v5) to broadly cover the entire history; we
found that major version v4 could be extracted successfully, while
the other versions lacked the files required by KConfigReader and
kbuildminer . Then, we ran the extraction for all minor versions
between v4 and v5 (i.e. v4.0-4.20); here, the extraction succeeded
for the minor versions v4.0 - v4.10. Finally, we ran the extraction
once for all versions between two minor versions (v4.4-v4.5); the
extraction was successful for 13,082 commits, and failed for 92 com-
mits. The extraction for these commits required roughly one week
and produced about 90GB of data. In conclusion, we estimate that
it is possible to extract a ground truth for more than 140,000 com-
mits (version v4.0 - v4.10) that span almost 2 years of the kernel’s
development history (2015 - 2017).

6.2 Variant Simulation
VEVOS’ variant simulation library offers the loading of datasets, sam-
pling of configurations, and generation of feature-aware variants.
The loading of a dataset is straightforward and has no feasibility
issues. The sampling of configurations is performed with the Fea-
tureIDE-library [26]. FeatureIDE offers a variety of functionality
for dealing with feature models, e.g., import and export of models,
and random sampling of configurations for a given feature model.
We were able to sample configurations for BusyBox and Linux.
On average, sampling five configurations took less than 0.1s for
BusyBox, and less than 120s for Linux. The generation of feature-
aware variants is programming language agnostic but expects an
annotation-based software product line (cf. Sec. 2), in which an-
notations are stored internally (i.e., within the source code), such
as for the preprocessor annotations, embedded annotations [19],
or feature tags [18]. On average, generating five variants took less
than one second for BusyBox, and less than 120 seconds for Linux.

7 THREATS TO VALIDITY
The design and implementation of VEVOS lead to a number of threats
to validity that any evaluation using VEVOS will inherit.

Internal Validity. Bugs in the implementation of the ground
truth extraction or the variant simulation are a threat to the internal
validity, which we mitigated by validating the correctness of the
variability extraction and variant generation through testing and
code reviews. Moreover, an analyzed software product line itself
might contain variability bugs causing problems during the ground
truth extraction, which may lead to invalid variants. It is impossible
to fully mitigate this threat. Yet, cloned variants may also contain
bugs, and novel methods and tools will have to account for them.

External Validity. The variants simulated by VEVOS are derived
from a software product line, which leads to differences compared
to cloned variants. First, instead of actually copying and adapting
an existing variant as in real clone-and-own, simulated variants
appear once their configuration has been derived from the feature
model, which introduces a bias to the simulation of the variants’
evolution. Yet, researchers may still simulate a cloning process by
introducing a dedicated variant at any point in a revision history in
which the variant’s configuration is valid according to the feature
model. Second, in real clone-and-own projects, variants might con-
tain unintentional divergences [48] (i.e., syntactic or even semantic
differences in the implementation of a common feature). In VEVOS’s
simulation, variants are derived from the same code base; code
which is common to multiple variants is exactly the same in these
variants. To date, we accept this threat to validity as it is the neces-
sary trade-off to obtain (1) realistic datasets that are derived from
real histories and (2) ground truth information on cloned variants.

8 CONCLUSION
We presented VEVOS, a framework that aids researchers with gen-
erating benchmarks for the empirical evaluation of clone-and-own
research. Given the history of a software product line, VEVOS gen-
erates the evolution of feature-aware variants. Notably, VEVOS pro-
vides the necessary ground truth information, in form of a feature
model, feature mappings, presence conditions, and code matchings,
which are crucial to evaluate research on variable software systems.

ACKNOWLEDGMENTS
This work has been partially supported by the German Research
Foundation (DFG) within the project VariantSync (TH 2387/1-1
and KE 2267/1-1), and by the German Ministry of Research and
Education (BMBF) within the ITEA3 project REVaMP (01IS16042H).

235

EASE 2022, June 13–15, 2022, Gothenburg, Sweden Schultheiß, et al.

REFERENCES
[1] Iago Abal, Jean Melo, Stefan Stănciulescu, Claus Brabrand, Márcio Ribeiro, and

Andrzej Wąsowski. 2018. Variability Bugs in Highly Configurable Systems: A
Qualitative Analysis. TOSEM 26, 3, Article 10 (2018), 10:1–10:34 pages.

[2] Hadil Abukwaik, Andreas Burger, Berima Kweku Andam, and Thorsten Berger.
2018. Semi-Automated Feature Traceability with Embedded Annotations. In
ICSME. IEEE, 529–533.

[3] Michał Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Thomas
Schmorleiz, Ralf Lämmel, Stefan Stănciulescu, Andrzej Wąsowski, and Ina Schae-
fer. 2014. Flexible Product Line Engineering with a Virtual Platform. In ICSE.
ACM, 532–535.

[4] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[5] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In
SPLC. Springer, 7–20.

[6] Thorsten Berger, Steven She, Rafael Lotufo, Krzysztof Czarnecki, and Andrzej
Wasowski. 2010. Feature-to-Code Mapping in Two Large Product Lines. SPLC,
498–499.

[7] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysztof
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems
Software Domain. TSE 39, 12 (2013), 1611–1640.

[8] Paul Maximilian Bittner, Alexander Schultheiß, Thomas Thüm, Timo Kehrer, Jef-
frey M. Young, and Lukas Linsbauer. 2021. Feature Trace Recording. In ESEC/FSE.
ACM, 1007–1020.

[9] Krzysztof Czarnecki and Ulrich Eisenecker. 2000. Generative Programming: Meth-
ods, Tools, and Applications. ACM/Addison-Wesley.

[10] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikschat, and Daniel
Lohmann. 2012. A Robust Approach for Variability Extraction from the Linux
Build System. In SPLC. ACM, 21–30.

[11] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature Location in Source Code: A Taxonomy and Survey. JSEP 25, 1 (2013),
53–95.

[12] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In CSMR. IEEE, 25–34.

[13] Slawomir Duszynski, Jens Knodel, and Martin Becker. 2011. Analyzing the Source
Code of Multiple Software Variants for Reuse Potential. InWCRE. IEEE, 303–307.

[14] Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. 2020. Fast Static Analy-
ses of Software Product Lines: An Example with More than 42,000 Metrics. In
VaMoS. ACM, Article 8, 9 pages.

[15] Gabriel Ferreira, Momin Malik, Christian Kästner, Jürgen Pfeffer, and Sven Apel.
2016. Do #ifdefs Influence the Occurrence of Vulnerabilities? An Empirical Study
of the Linux Kernel. In SPLC. ACM, 65–73.

[16] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing Clone-and-Own with Systematic Reuse for Developing
Software Variants. In ICSME. IEEE, 391–400.

[17] Tobias Heß, Chico Sundermann, and Thomas Thüm. 2021. On the Scalability of
Building Binary Decision Diagrams for Current Feature Models. In SPLC. ACM,
131–135.

[18] Patrick Heymans, Quentin Boucher, Andreas Classen, Arnaud Bourdoux, and
Laurent Demonceau. 2012. A Code Tagging Approach to Software Product Line
Development. STTT 14 (2012), 553–566. Issue 5.

[19] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.
Maintaining Feature Traceability with Embedded Annotations. In SPLC. ACM,
61–70.

[20] Christian Kästner. 2017. Differential testing for variational analyses: Experience
from developing KConfigReader. CoRR (2017). arXiv:1706.09357

[21] Christian Kästner, Alexander Dreiling, and Klaus Ostermann. 2014. Variability
Mining: Consistent Semiautomatic Detection of Product-Line Features. TSE 40, 1
(2014), 67–82.

[22] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus
Ostermann, and Thorsten Berger. 2011. Variability-Aware Parsing in the Presence
of Lexical Macros and Conditional Compilation. In OOPSLA. ACM, 805–824.

[23] Ed Keenan, Adam Czauderna, Greg Leach, Jane Cleland-Huang, Yonghee Shin,
Evan Moritz, Malcom Gethers, Denys Poshyvanyk, Jonathan Maletic, Jane Huff-
man Hayes, et al. 2012. Tracelab: An Experimental Workbench for Equipping
Researchers to Innovate, Synthesize, and Comparatively Evaluate Traceability
Solutions. In ICSE. IEEE, 1375–1378.

[24] Timo Kehrer, Thomas Thüm, Alexander Schultheiß, and Paul Maximilian Bittner.
2021. Bridging the Gap Between Clone-and-Own and Software Product Lines. In
ICSE. IEEE, 21–25.

[25] Alexander Knüppel, Thomas Thüm, Stephan Mennicke, Jens Meinicke, and Ina
Schaefer. 2017. Is There a Mismatch Between Real-World Feature Models and
Product-Line Research?. In ESEC/FSE. ACM, 291–302.

[26] Sebastian Krieter, Marcus Pinnecke, Jacob Krüger, Joshua Sprey, Christopher
Sontag, Thomas Thüm, Thomas Leich, and Gunter Saake. 2017. FeatureIDE:
Empowering Third-Party Developers. In SPLC. ACM, 42–45.

[27] Christian Kröher, Sascha El-Sharkawy, and Klaus Schmid. 2018. KernelHaven:
An Experimentation Workbench for Analyzing Software Product Lines. In ICSEC.
ACM, 73–76.

[28] Christian Kröher, Lea Gerling, and Klaus Schmid. 2018. Identifying the Intensity
of Variability Changes in Software Product Line Evolution. In SPLC. ACM, 54–64.

[29] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and
Thorsten Berger. 2019. Where is my Feature and What is it About? A Case Study
on Recovering Feature Facets. JSS 152 (2019), 239–253.

[30] Elias Kuiter, Sebastian Krieter, Jacob Krüger, Kai Ludwig, Thomas Leich, and
Gunter Saake. 2018. PClocator: A Tool Suite to Automatically Identify Configu-
rations for Code Locations. In SPLC. ACM, 284–288.

[31] Raúl Lapeña, Manuel Ballarin, and Carlos Cetina. 2016. Towards Clone-and-Own
Support: Locating Relevant Methods in Legacy Products. In SPLC. ACM, 194–203.

[32] Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens Dörre,
and Christian Lengauer. 2012. Large-Scale Variability-Aware Type Checking and
Dataflow Analysis. Technical Report MIP-1212. University of Passau.

[33] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej
Wąsowski. 2010. Evolution of the Linux Kernel Variability Model. In SPLC.
Springer, 136–150.

[34] Wardah Mahmood, Daniel Strueber, Thorsten Berger, Ralf Laemmel, and Muke-
labai Mukelabai. 2021. Seamless Variability Management With the Virtual Plat-
form. In ICSE. IEEE, 1658–1670.

[35] Jabier Martinez, Wesley K. G. Assunção, and Tewfik Ziadi. 2017. ESPLA: A
Catalog of Extractive SPL Adoption Case Studies. In SPLC. ACM, 38–41.

[36] Jabier Martinez, Nicolas Ordoñez, Xhevahire Tërnava, Tewfik Ziadi, Jairo Aponte,
Eduardo Figueiredo, and Marco Tulio Valente. 2018. Feature Location Benchmark
with ArgoUML SPL. In SPLC. ACM, 257–263.

[37] Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein, and Yves
Le Traon. 2015. Bottom-Up Adoption of Software Product Lines: A Generic and
Extensible Approach. In SPLC. ACM, 101–110.

[38] Jabier Martinez, Tewfik Ziadi, Mike Papadakis, Tegawendé F. Bissyandé, Jacques
Klein, and Yves le Traon. 2018. Feature Location Benchmark for Extractive
Software Product Line Adoption Research Using Realistic and Synthetic Eclipse
Variants. IST 104 (2018), 46–59.

[39] Thilo Mende, Rainer Koschke, and Felix Beckwermert. 2009. An Evaluation of
Code Similarity Identification for the Grow-and-Prune Model. JSME 21, 2 (2009),
143–169.

[40] Gabriela Karoline Michelon, David Obermann, Wesley K. G. Assunção, Lukas
Linsbauer, Paul Grünbacher, and Alexander Egyed. 2021. Managing Systems
Evolving in Space and Time: Four Challenges for Maintenance, Evolution and
Composition of Variants. In SPLC. ACM, 75–80.

[41] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. 2015.
Where Do Configuration Constraints Stem From? An Extraction Approach and
an Empirical Study. TSE 41, 8 (2015), 820–841.

[42] Leonardo Passos, Leopoldo Teixeira, Nicolas Dintzner, Sven Apel, Andrzej Wą-
sowski, Krzysztof Czarnecki, Paulo Borba, and Jianmei Guo. 2016. Coevolution
of Variability Models and Related Software Artifacts. EMSE 21, 4 (2016).

[43] Tobias Pett, Sebastian Krieter, Tobias Runge, Thomas Thüm, Malte Lochau, and
Ina Schaefer. 2021. Stability of Product-Line Sampling in Continuous Integration.
In VaMoS. ACM, Article 18, 9 pages.

[44] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer.

[45] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. 2013. Managing Cloned
Variants: A Framework and Experience. In SPLC. ACM, 101–110.

[46] AnaB. Sánchez, Sergio Segura, JoséA. Parejo, and Antonio Ruiz-Cortés. 2015.
Variability Testing in the Wild: The Drupal Case Study. SoSyM (2015), 1–22.

[47] Klaus Schmid, Sascha El-Sharkawy, and Christian" Kröher. 2019. Improving
Software Engineering Research Through Experimentation Workbenches. Springer,
67–82.

[48] Thomas Schmorleiz and Ralf Lämmel. 2014. Similarity Management via History
Annotation. In SATToSE. Dipartimento di Informatica Università degli Studi
dell’Aquila, L’Aquila, Italy, 45–48.

[49] Christoph Seidl, Ina Schaefer, and Uwe Aßmann. 2014. Capturing Variability
in Space and Time with Hyper Feature Models. In VaMoS. ACM, Article 6, 6:1–
6:8 pages.

[50] Daniel Strüber, Mukelabai Mukelabai, Jacob Krüger, Stefan Fischer, Lukas Lins-
bauer, Jabier Martinez, and Thorsten Berger. 2019. Facing the Truth: Benchmark-
ing the Techniques for the Evolution of Variant-Rich Systems. In SPLC. ACM,
177–188.

[51] Stefan Stănciulescu, Sandro Schulze, and Andrzej Wąsowski. 2015. Forked and
Integrated Variants in an Open-Source Firmware Project. In ICSME. IEEE, 151–
160.

[52] Zhenchang Xing, Yinxing Xue, and Stan Jarzabek. 2013. A large scale linux-kernel
based benchmark for feature location research. In ICSE. IEEE, 1311–1314.

[53] Chenguang Zhu, Yi Li, Julia Rubin, and Marsha Chechik. 2017. A Dataset for Dy-
namic Discovery of Semantic Changes in Version Controlled Software Histories.
In MSR. IEEE, 523–526.

236

https://arxiv.org/abs/1706.09357

	Abstract
	1 Introduction
	2 Multi-Variant Software Systems
	3 Problem Statement
	4 Related Work
	5 Benchmark Generation with VEVOS
	5.1 Ground Truth Extraction
	5.2 Variant Simulation

	6 Validation of Technical Feasibility
	6.1 Ground Truth Extraction
	6.2 Variant Simulation

	7 Threats to Validity
	8 Conclusion
	Acknowledgments
	References

