
Scalable N-Way Model Matching
Using Multi-Dimensional Search Trees

Alexander Schultheiß∗, Paul Maximilian Bittner§, Lars Grunske∗, Thomas Thüm§ and Timo Kehrer∗
∗Humboldt University of Berlin, Germany

{schultha, grunske, kehrerti}@informatik.hu-berlin.de
§University of Ulm, Germany

{paul.bittner, thomas.thuem}@uni-ulm.de

Abstract—Model matching algorithms are used to identify
common elements in input models, which is a fundamental pre-
condition for many software engineering tasks, such as merging
software variants or views. If there are multiple input models,
an n-way matching algorithm that simultaneously processes all
models typically produces better results than the sequential
application of two-way matching algorithms. However, existing
algorithms for n-way matching do not scale well, as the compu-
tational effort grows fast in the number of models and their size.
We propose a scalable n-way model matching algorithm, which
uses multi-dimensional search trees for efficiently finding suitable
match candidates through range queries. We implemented our
generic algorithm named RaQuN (Range Queries on N input
models) in Java, and empirically evaluate the matching quality
and runtime performance on several datasets of different origin
and model type. Compared to the state-of-the-art, our experi-
mental results show a performance improvement by an order of
magnitude, while delivering matching results of better quality.

Index Terms—Model-driven engineering, n-way model match-
ing, clone-and-own development, software product lines, multi-
view integration, variability mining.

I. INTRODUCTION

Matching algorithms are an essential requirement for de-
tecting common parts of development artifacts in many soft-
ware engineering activities. In domains where model-driven
development has been adopted in practice, such as automotive,
avionics, and automation engineering, numerous model vari-
ants emerge from cloning existing models [1]–[3]. Integrating
such autonomous variants into a centrally managed software
product line in extractive software product-line engineering [4]
requires to detect similarities and differences between them,
which in turn requires to match the corresponding model
elements of the variants. Moreover, matching algorithms are
an indispensable basis for merging parallel lines of develop-
ment [5], or for consolidating individual views to gain a unified
perspective of a multi-view system specification [6].

Currently, almost all existing matching algorithms can only
process two development artifacts [7]–[18], whereas the afore-
mentioned activities typically require to identify corresponding
elements in multiple (i.e., n > 2) input models. A few
approaches calculate an n-way matching by repeated two-way
matching of the input artifacts [19]–[24]. In each step, the

This work has been supported by the German Research Foundation within
the project VariantSync (KE 2267/1-1 and TH 2387/1-1).

resulting two-way correspondences are simply linked together
to form correspondence groups or matches (aka. tuples [25]).

However, sequential two-way matching of models may yield
sub-optimal or even incorrect results because not all input
artifacts are considered at the same time [25]. The order in
which input models are processed influences the quality of
the matching because better match candidates may be found
after an element has already been matched. An order might be
determinable if a reference model is given, but this is typically
not the case [6], [19], [26]–[30]. An optimal processing order
cannot be anticipated and applying all n! possible orders for
n input models is clearly infeasible [21].

The only matching approach which simultaneously pro-
cesses n input models is a heuristic algorithm called NwM
by Rubin and Chechik [25]. NwM delivers n-way matchings
of better quality than sequential two-way matching. Yet, we
faced scalability problems when applying NwM to models
of realistic size, comprising hundreds or even thousands of
elements. The most likely reason for this is the huge number of
model element comparisons, which often leads to performance
problems even in the case of few input models if these models
are large [31]–[33]. Thus, there is a strong need for a scalable
n-way matching solution.

We propose RaQuN (Range Queries on N input models),
a generic, heuristic n-way model matching algorithm. The key
idea behind RaQuN is to map the elements of all input models
to points in a numerical vector space. RaQuN embeds a multi-
dimensional search tree into this vector space to efficiently find
nearest neighbors of elements, i.e., those elements which are
most similar to a given element. By comparing an element only
with its nearest neighbors serving as match candidates, RaQuN
can reduce the number of required comparisons considerably.

For our empirical assessment, we use datasets from different
domains and development scenarios. Next to academic and
synthetic models [25], [34], we investigate variants gener-
ated from model-based product lines [35]–[38], and reverse-
engineered models from clone-and-own development [1], [39].
Our evaluation shows that RaQuN reduces the number of
required comparisons by more than 90% for most experimental
subjects, making it possible to match models of realistic size
simultaneously. In summary, our contributions are:
Generic Matching Algorithm (Section III). We present

RaQuN, a generic simultaneous n-way model matching

http://doi.org/10.5281/zenodo.5150388

algorithm using multi-dimensional search trees.
Domain-agnostic Configuration (Section IV). For all varia-

tion points of the generic algorithm, we propose domain-
agnostic configuration options turning RaQuN into an off-
the-shelf n-way model matcher.

Empirical Evaluation (Section V). We show that RaQuN
has good scaling properties and can be applied to large
models of various types, while delivering matches of
better quality than other approaches.

II. N-WAY MATCHING

In this section, we illustrate the n-way model matching
problem with a simple running example, and discuss how
algorithmic approaches calculate a matching in practice. The
three UML class diagrams A, B, and C given in Fig. 1 are
fragments of the hospital case study [25], [34]. Each of the
three models is an early design variant of the data model of a
medical information system. We use the symbolic identifiers
1 to 8 to uniquely refer to the models’ classes.

Our representation of models follows the so-called element-
property approach [25]. A model M of size m is a set of
elements {e1, . . . , em}. Each model element e ∈ M , in turn,
comprises a set of properties. For our running example, we
consider UML classes as elements, and we restrict ourselves
to two kinds of properties, namely class names and attributes.
However, the element/property approach is general enough to
account for other kinds of model elements (e.g., states and
transitions in statecharts), and other kinds of properties (e.g.,
element references or element types).

Intuitively, n-way matching refers to the problem of iden-
tifying the common elements among a given set of n input
models. A reasonable matching for our example is illustrated
in Fig. 1, indicated by solid lines. The models A and B each
contain a class named Physician. Both classes have several
attributes in common and may thus be considered to represent
“the same” conceptual model element in different variants.
Following common terminology from the field of two-way
matching, we say that class Physician in model A corresponds
to class Physician in model B. Similarly, each of the three
models contains a class named AdminAssistant, and all three
variants of the class share several identical attributes. Thus,
these classes form a so-called correspondence group (aka.
tuple [25]). We call such a correspondence group a match.

Formally, we define an n-way matching algorithm as a
function which takes as input a set M = {M1, ...,Mn} of
input models and returns a matching T . A matching T =
{t1, . . . , tk} is defined as a set of matches, where each match
t ∈ T is a non-empty set of model elements. Analogously
to all existing approaches to n-way matching [19]–[25], we
assume matches in T to be mutually disjoint, and that no two
elements of a match belong to the same input model. Formally,
a match t is valid if it satisfies the condition

t ̸= ∅ ∧ |t| = |µ(t)| (1)

where µ(t) denotes the set of input models from which the
elements of t originate. The intuitive matches illustrated in

AdminAssistant

n_AdminAssistant
ex_medicalTeam
calendar

Physician

n_Physician
ex_medicalTeam
patient
ward
history

History

n_History
procedure
patientProfile
nurse
physician

Model A

AdminAssistant

n_AdminAssistant
ex_medicalTeam
decision

Physician

n_Physician
ex_medicalTeam
patient
ward
decision

Ward
n_Ward
nurse
physician
technician
room
unit

Model B

AdminAssistant
n_AdminAssistant
ex_medicalTeam
calendar
procedure

Unit

n_Unit
ex_generalStorage
description
room
display
scannerModel C

1

2

3

4

5

6

7

8

Fig. 1. Three UML models representing early design variants of the data
model of a medical information system, serving as running example.

Fig. 1, i.e., {3, 5, 7}, {2, 4}, {1}, {6}, and {8}, are valid and
mutually disjoint.

In theory, a matching could be computed by considering
all possible matches for a set of input models. However, this
approach is not feasible, as the number of possible matches for
a set of models is equal to (

∏n
i=1 (mi + 1))− 1 [25], where

n denotes the number of models, and mi denotes the number
of elements in the i-th model.

A trivial approach would be to rely on persistent identifiers
or names of model elements. The limitations of such simple
approaches have been extensively discussed in the literature
on two-way matching [8], [9], [31]–[33] (cf. related work in
Section VI), and also apply to the n-way model matching
problem. Reliable identifiers are hardly available across sets
of variants, and names are not sufficiently eligible for taking
an informed matching decision without considering other
properties. In particular, names are not necessarily unique, and
some model elements do not have names at all [40].

In practice, matching algorithms thus operate heuristically.
This requires a notion for the quality of a match, or in other
words, a measure for the similarity of matched elements.
Given a match t ∈ T , a similarity function calculates a value
representing the similarity of the elements in t. We assume
that a similarity function makes it possible (i) to establish a
partial order on a set of matches, and (ii) to determine whether
a set of candidate elements should be matched. An example
for a similarity function is the weight metric introduced by
Rubin and Chechik [25] (see Section IV-C).

III. GENERIC MATCHING ALGORITHM

In this section, we first describe our generic n-way match-
ing algorithm RaQuN (Alg. 1), followed by an illustration
applying the algorithm to our running example introduced
in Section II, and closing with a theoretical analysis of the
algorithm’s runtime complexity. We focus on the high-level
steps that are performed by the algorithm, while we discuss the
details of how each step can be configured later in Section IV.

A. Description of the Algorithm

RaQuN takes as input a set M = {M1, ...,Mn} of n input
models and returns a set T of matches (i.e., a matching). The

algorithm is divided into three phases. The goal of the first
two phases (candidate initialization and candidate search) is
to reduce the number of comparisons required in the third
phase (matching).

Algorithm 1 RaQuN
1: procedure RAQUN(M) ▷ A set of input models
2: E ←

⋃i=N
i=1 Mi ▷ Phase 1:

3: tree ← createEmptyTree() Candidate
4: for e ∈ E do Initialization
5: ve ← vectorize(e)
6: tree ← insert(tree, e, ve)
7: end for
8: P ← ∅ ▷ Phase 2:
9: for e ∈ E do Candidate

10: Nbrs ← neighborSearch(tree, e) Search
11: for nbr ∈ Nbrs do
12: p← {e, nbr}
13: if isV alid(p) then
14: P ← P ∪ {p}
15: end if
16: end for
17: end for
18: P̂ ← filterAndSort(P) ▷ Phase 3:
19: T ←

{
{e} | e ∈ E

}
Matching

20: for {e, e′} ∈ P̂ do
21: t← select t ∈ T for which e ∈ t
22: t′ ← select t′ ∈ T for which e′ ∈ t′

23: t̂← t ∪ t′

24: if isV alid(t̂) and shouldMatch(t, t′, e, e′) then
25: T ←

(
T \ {t, t′}

)
∪ {t̂}

26: end if
27: end for
28: return T ▷ The calculated matching
29: end procedure

Candidate Initialization (Line 2–7): In the first phase,
RaQuN constructs a multi-dimensional search tree comprising
all the elements of all input models as numerical vector
representations. First, RaQuN collects the elements of all input
models in an element set E, and initializes an empty tree. For
each element e ∈ E, a vector representation ve is determined
and inserted into the tree. Hereby, each element is mapped to
a specific point in the tree’s vector space.

Candidate Search (Line 8–17): In the second phase,
RaQuN determines promising match candidates by consider-
ing elements that are close to each other in the vector space,
regarding a suitable distance metric (e.g., Euclidean distance).
More specifically, RaQuN retrieves the k′ nearest neighbors
Nbrs for each element e ∈ E in the vector space through a
k′-NN search on the tree [41]. For every neighbor nbr ∈ Nbrs
of e, RaQuN creates an unordered pair p = {e, nbr}. If p is
a valid match according to (1) (i.e., the two elements belong
to different models), p is added to the match candidates P .

Matching (Line 18–27): In the final phase, RaQuN
matches elements to each other by comparing the elements
in the pairs P directly. First, in Line 18, all candidate pairs
in P are sorted descendingly by their similarity, yielding list
P̂ , omitting pairs with no common properties. Next, RaQuN
creates a set T of matches such that each element e ∈ E
appears in exactly one single-element match {e}. The set T
is a valid matching in which none of the elements has a
corresponding partner. For every candidate match {e, e′} ∈ P̂ ,
RaQuN selects the two matches t and t′ from T which contain
the two elements e and e′, respectively. Since every element
e ∈ E is in exactly one match in T , the selection of t and
t′ is unique. If the union t̂ of t and t′ is a valid match and
its elements form a good match according to shouldMatch,
RaQuN updates the matching T by replacing the two selected
matches t and t′ with the merged match t̂. The algorithm
terminates once all pairs in P̂ have been processed. Each
match now contains between one and n elements, and T
represents a valid matching.

B. Exemplary Illustration

We illustrate RaQuN by applying it to our running exam-
ple shown in Fig. 1, comprising the input models: M ={
{1, 2, 3}, {4, 5, 6}, {7, 8}

}
.

Candidate Initialization: RaQuN first creates the set of
all elements E = {1, 2, 3, 4, 5, 6, 7, 8} by forming the union
over the models in M. For our example, we choose a very
simple two-dimensional vectorization. The first dimension is
the average length of an elements’ property names, and the
second one is the number of properties of an element. Class
1:History-A, for example, has an average property name length
of 9.2 and five properties in total; its vector representation is
(9.2, 5). Fig. 2 visualizes the resulting k-dimensional vector
space (k=2) and the points of all elements in E. We can see
that intuitively corresponding classes are mapped to points
close to each other, such as the two ’Physician’ classes from
model A and B.

Candidate Search: RaQuN performs range queries on the
tree to find possible match candidates. For our example, we
assume that the candidate search is configured to search for the
three nearest neighbors of each element (k′=3). It is possible
that multiple elements have the same vector representation and
are mapped to the same point in the vector space, such as
elements 3 and 5 in Fig. 2. Therefore, RaQuN might retrieve
more than k′ neighboring elements. In our example, RaQuN
finds the neighbors {2, 4, 1} for element 2:Physician-A, and
the neighbors {3, 5, 7, 1} for element 3:AdminAssistant-A.
Neighbors forming a valid match with the initial element can
be considered as match candidates. For 3:AdminAssistant-A,
the retrieved candidate pairs are {3, 5} and {3, 7}. Once the
candidate search has been completed for all elements, we
obtain the set P of candidate pairs:

P =
{
{1, 4}, {2, 4}, {3, 5}, {3, 7}, {5, 7}, {5, 1},
{6, 2}, {6, 8}, {7, 1}, {8, 2}, {8, 4}

}
.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13

2:Physician-A
(8.6, 5)

4:Physician-B
(8.8, 5) 3:AdminAssistant-A

(12.67, 3)
5:AdminAssistant-B

(12.67, 3)

6:Ward-B
(6.33, 6)

Average Property Length

N
u

m
b

e
r

o
f

P
ro

p
e
rt

ie
s

7:AdminAssistant-C
(11.75, 4)

1:History-A
(9.2, 5)

8:Unit-C
(8.67, 6)

Fig. 2. Model elements of our running example mapped to points in a k-
dimensional vector space (with k=2).

Matching: RaQuN sorts the match candidates P by
descending confidence that their elements should be matched,
according to its similarity function. For the sake of illustration,
we choose a naive similarity function: the ratio of shared
properties to all properties in the two elements. We receive
the following (partially) sorted list of candidate pairs:

P̂ =
(
{3, 7}: 34 , {2, 4}:

4
6 , {3, 5}:

2
4 ,

{5, 7}: 25 , {7, 1}:
1
8 , {6, 8}:

1
11

)
,

where {x, y}:z denotes a pair with elements x and y having a
similarity of z. Pairs with a similarity of 0 are removed during
sorting, as their elements have no common properties.

Next, RaQuN initializes the set of matches T such that
there is exactly one initial match for each element: T ={
{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}

}
. RaQuN now iterates

over the pairs in P̂ and merges the corresponding matches in
T accordingly. To keep the example simple, we assume that
matches should be merged if the similarity of the candidate
pair is at least 1

2 . The first pair that is selected is {3, 7}, as
its elements have the highest similarity. Thus, we select the
matches t = {3} and t′ = {7} from T and check whether their
comprised elements should be matched. This is the case for
the selected matches since the similarity between its elements
is 3

4 > 1
2 . We thus merge the matches to the new match

t̂ = {3, 7}. We replace t and t′ with t̂, and receive T ={
{1}, {2}, {3, 7}, {4}, {5}, {6}, {8}

}
. In the second iteration,

RaQuN selects t = {2} and t′ = {4}. Both are merged to the
valid match t̂ = {2, 4}. RaQuN repeats this process until all
candidate matches in P̂ have been considered. We obtain the
final matching T =

{
{1}, {2, 4}, {3, 5, 7}, {6}, {8}

}
, which

is equal to the intuitive matching illustrated in Fig. 1.

C. Worst-Case Complexity

We estimate RaQuN’s worst-case runtime complexity for
each phase. Let n denote the number of input models and m
the number of elements in the largest model.

Candidate Initialization: Each element e ∈ E with |E| ≤
nm is vectorized and inserted into the tree. We assume that
vectorization is an O(1) operation. Given that insertion into a
search tree is possible in O(nm) [41], the worst-case runtime
complexity of this phase is O(nm · (1 + nm)) = O(n2m2).

Candidate Search: For each of the at most nm elements
in E, a neighbor search is performed which is possible in
O(log nm) [41], [42]. For each of the potential nm neighbors
(e.g., when all elements are at the same point) three constant
runtime operations are performed in Line 12–15. This results
in a complexity of O(nm · (log nm+ nm · 1)) = O(n2m2).

Matching: The matching phase operates on the set of
possible pairs P̂ to match. In worst case, all elements from
other models are valid match candidates for an element e
during Phase 2. Thus, |P̂ | ≤ (nm)2 and sorting P̂ in
Line 18 requires O(n2m2 log nm) steps in the worst case.
Constructing T in Line 19 is possible in O(nm). The steps
inside the loop at Line 20 have to be repeated O(n2m2)
times because |P̂ | ≤ (nm)2. Searching for matches t, t′ in
Line 21 and 22 has a worst case complexity of O(nm) because
|T | ≤ nm. Merging the matches in Line 23 is O(n) as valid
matches only contain at most one element per model, i.e.,
|t|, |t′| ≤ n. For the same reason, shouldMatch in Line 24
requires O(n) steps. Line 25 exhibits worst-case runtime of
O(nm). We get O(n2m2 log nm+ n2m2 · nm) = O(n3m3).

Overall Complexity: The matching phase dominates the
runtime complexity: We get O(n2m2 + n2m2 + n3m3) =
O(n3m3) in the worst case, which is an improvement over
NwM’s worst-case complexity of O(n4m4) [25]. In practice,
we expect a much lower runtime complexity because Phase
1 and 2 of RaQuN are dedicated to reduce the number of
comparisons in Phase 3. It is highly unlikely that all elements
are mapped to the same point in the vector space such that all
pairs of elements become potential match candidates in P̂ .

IV. CONFIGURATION OPTIONS

In this section, we discuss the variation points of RaQuN.
For each of them, we propose a domain-agnostic configuration
option such that RaQuN can be applied to models of any type.

A. Candidate Initialization

The candidate initialization has two points of variation: the
multi-dimensional search tree and the vectorization.

RaQuN can construct the vector space with any multi-
dimensional data structure supporting insertion and neighbor
search, such as kd-trees [41].

The vectorization function defines the abstraction of model
elements and their properties. Generally speaking, a vector-
ization function should cluster similar elements in the same
region of the vector space. Clustering of similar elements
becomes more likely with a higher number of dimensions,
as more information about an element can be preserved
in its vector representation. However, a higher number of
dimensions also has a negative impact on the performance
of the nearest neighbor search.

While we leave an in-depth investigation of this trade-off for
future work, in this paper, we use a vectorization which can be
applied to any element/property representation of a model. It
represents all distinct properties of model elements of all input
models by a dedicated dimension of the vector space {0, 1}K ,
where K is the number of distinct properties in all elements.

An element is represented by a bit vector in this space; the
value at the index representing a dedicated property is set to
1 if the element has that property, and 0 otherwise.

B. Candidate Search

The candidate search is configured by the number of con-
sidered nearest neighbors k′ and the distance metric.

The parameter k′ determines how many neighbors are
retrieved for each element, which directly influences how
many candidate pairs p are considered during the matching
phase. Increasing k′ leads to more candidate pairs. Each
neighbor will be less significant than the previous one as
nearer (more similar) neighbors are considered first. While
an optimal value of k′ can only be determined empirically
with respect to a dedicated measure of matching quality, a
reasonable starting point for this is to set k′=n, as in our
illustration in Section III-B. The rationale behind this is that
each element may have at most one corresponding element per
input model, limiting the number of corresponding elements to
n-1. The choice of n respects that the nearest neighbor search
considers the query point itself as first neighbor.

The distance metric is used to determine the distance
between the vector representations of two elements in the
vector space. The metric influences which elements are con-
sidered close or distant to each other (i.e., which elements are
considered to be neighbors). In this work, we use the Euclidean
distance, leaving experimentation with other distance metrics
such as Cosine similarity or any custom metric (e.g., a metric
emphasizing specific dimensions) for future work.

C. Candidate Matching

In RaQuN’s final matching phase, potential match can-
didates are compared directly according to their similarity,
and the shouldMatch predicate determines whether candidates
should be formed to actual matches.

The similarity function is applied to assess the quality of
a matching as illustrated in Section II. It is used to sort the
match candidates P̂ in Line 18 such that more similar pairs are
considered to be merged first. One such similarity function is
the weight metric by Rubin and Chechik [25], which assigns
a weight w(t) ∈ [0, 1] to a match depending on the number of
common properties and the number of elements in the match.
Given a match t, the weight is calculated as

w(t) =

∑
2≤j≤|t| j

2 · np
j

n2 · |π(t)|
(2)

where |t| denotes the size of the match, np
j the number of

properties that occur in exactly j elements of the match, and
π(t) is the set of all distinct properties of all elements in t.

The purpose of shouldMatch is to compensate potential
inaccuracy from abstracting elements by numerical vectors.
In general, an implementation of shouldMatch could work on
concrete model representations, consider meta-data related to
the models, etc. To stay independent of such domain-specific
aspects, in this work, we stick to using the generic weight
metric for implementing shouldMatch. The idea is that any

TABLE I
EXPERIMENTAL SUBJECTS AND THEIR CHARACTERISTICS.

Elements Properties
Model Type #Models Avg. Median Avg. Median

Hospital Simple class diag. 8 27.62 26 4.84 4
Warehouse Simple class diag. 16 24.25 22 3.65 3
Random Synthetic 100 26.99 26 5.36 5
Loose Synthetic 100 28.88 29 4.43 4
Tight Synthetic 100 25.01 25 8.79 9
PPU Structure SysML block diag. 13 32.15 32 3.26 2
PPU Behavior UML statemachines 13 221.85 228 5.04 5
bCMS UML class diag. 14 67.71 63 3.60 2
BCS Component/connector 18 78.78 72 5.81 4
ArgoUML UML class diag. 7 1,752.86 1,749 9.05 4
Apo-Games Simple class diag. 20 63.05 60 19.62 13

extension of a match should increase the quality of the overall
matching. To that end, two matches t and t′ are merged if the
weight of the merged match t ∪ t′ is greater than the sum of
the individual match weights:

shouldMatch(t, t′, e, e′) := w(t ∪ t′) > w(t) + w(t′) (3)

V. EVALUATION

In addition to our conceptual and theoretical contributions,
we conduct an empirical investigation on a variety of datasets.
We are interested in whether RaQuN scales for large models
while achieving high matching quality. The full replication
package can be found on Zenodo [43].

RQ1 Does RaQuN achieve better runtime and/or matching
quality compared to the simultaneous n-way matching al-
gorithm NwM and sequential two-way approaches?

RQ2 How does the configuration of RaQuN’s candidate
search affect its performance?

RQ3 How does RaQuN scale with growing model sizes?

A. Selected Algorithms

We compare RaQuN with NwM and two sequential two-
way approaches (Pairwise). All algorithms are implemented
in Java and use the weight metric [25] (2) as a similarity
function (see Section II).

1) Prototypical Implementation of RaQuN: We imple-
mented a prototype of RaQuN which uses a generic kd-
tree implemented by the Savarese Software Research Cor-
poration [44] as multi-dimensional search tree. For all other
variation points, we implemented the domain-agnostic config-
uration options discussed in Section IV.

2) Baseline Algorithms: The prevalent way to calculate n-
way matchings is sequential two-way [19]–[24]. This leaves
open (a) which two-way matching algorithm is used in each
iteration, and (b) the order in which inputs are processed.
For (a) we use the Hungarian algorithm [45] to maximize the
weight of the matching in each iteration. For (b), Rubin and
Chechik [25] report the most promising results for the Ascend-
ing and Descending strategies, which sort the input models
by number of elements in ascending and descending order,
respectively. For NwM, we use the prototype implementation
provided by Rubin and Chechik [25].

B. Experimental Subjects
Our experimental subjects and their basic characteristics are

summarized in Table I. Converting the experimental subjects
into element/property representations requires a pre-processing
step that is model-type and technology-specific. We used the
generic EMF model traversal and reflective API to access an
element’s local properties and referenced elements. Our pre-
processing code is part of our replication package [43].

1) Experimental Subjects of Rubin and Chechik: To enable
a fair comparison with NwM, the first five subjects selected for
our evaluation stem from the n-way model matching bench-
mark set used by Rubin and Chechik [25]. The Hospital and
Warehouse datasets include sets of student-built requirements
models of a medical information and a digital warehouse
management system, for both of which variation arises from
taking different viewpoints. Both datasets originate from case
studies conducted in a Master’s thesis by Rad and Jabbari [34].
The latter three datasets have been synthetically created using
a model generator, which in the Random case mimics the
characteristics of the hospital and warehouse models. The
Loose scenario exposes a larger range of model sizes and
a smaller number of properties shared among the models’
elements, while the Tight scenario exposes a smaller range
w.r.t. these parameters.

2) Variant Sets Generated from Software Product Lines:
The second set of selected subjects are variant sets generated
from model-based software product lines. We use a superset
of the n-way model merging benchmark set used in a recent
work of Reuling et al. [46].

The Pick and Place Unit (PPU) is a laboratory plant from
the domain of industrial automation systems [47], [48] whose
system structure and behavior are described in terms of SysML
block diagrams and UML statemachines, respectively [35].
Variation arises from different scenarios supported by the
plant. The Barbados Car Crash Crisis Management System
(bCMS) [36], [49] supports the distributed crisis management
by police and fire personnel for accidents on public roadways.
We focus on the object-oriented implementation models of
the system [36], including both functional and non-functional
variability. The Body Comfort System (BCS) [37] is a case
study from the automotive domain whose software can be
configured w.r.t. the physical setup of electronic control units.
We use the component/connector models of BCS, specifying
the software architecture of the 18 variants sampled by Lity
et al. [37]. ArgoUML is a publicly available CASE-tool
supporting model-driven engineering with the UML. It was
used in prior studies [50], [51] and provides a ground truth
for assessing the quality of a matching using precision and
recall. The dataset comprises detailed class models of the Java
implementation [38]. They represent different tool variants
which have been extracted by removing specific features for
supporting different UML diagrams.

3) Variant Sets Created Through Clone-and-Own: The last
experimental subject stems from a software family called
Apo-Games which has been developed using the clone-and-
own approach [1], [39] (i.e., new variants were created by

copying and adapting an existing one) and which has been
recently presented as a challenge for variability mining [52].
The challenge comprises 20 Java and five Android variants,
from which we selected the Java variants only.

C. Evaluation Metrics

While measuring efficiency is a largely straightforward
micro benchmarking task, there exists no generally accepted
definition of the quality of a matching in the literature [46].
We use the two most widely established quality evaluation
metrics weight and precision/recall.

1) Weight: One way to measure the quality of an n-
way matching is the weight metric [25], where the optimal
matching is the one with the highest weight, expressed as the
sum of the individual match weights. Given a matching T , its
weight is calculated as w(T) =

∑
t∈T w(t), where w(t) is

calculated as in (2). There can be several matchings with the
same weight, and thus several optimal matchings for a set of
models. We selected the weight metric as it does not depend
on a ground truth, which is often not available.

2) Precision/Recall: In the context of two-way matching,
the quality of a matching is often assessed using oracles and
traditional measures (i.e., precision and recall) known from
the field of information retrieval [53]. For our experimental
subjects, however, such oracles are only available for models
generated from an SPL. Here, unique identifiers id(e) may be
attached to all model elements e of the integrated code base
and serve as oracles when being preserved by the model gen-
eration. This way, corresponding elements have the same ID.
These IDs are generally not available for models that did not
originate from an SPL (e.g., models created through cloning),
and they are not exploited by the matching algorithms used in
our experiments.

Each two-element subset of a valid match is considered a
true positive TP if its elements share the same ID. If these
elements have different IDs, they are considered false positive
FP . Two elements sharing the same ID but being in distinct
matches are considered false negatives FN . The amount of
TP , FP , and FN is defined over all the matches in T :

TP (T) =
∑
t∈T

∣∣{{e1, e2} ⊆ t | id(e1) = id(e2)
}∣∣ (4)

FP (T) =
∑
t∈T

∣∣{{e1, e2} ⊆ t | id(e1) ̸= id(e2)
}∣∣ (5)

FN(T) =
∣∣ ⋃
t1,t2∈T
t1 ̸=t2

{
{e1, e2} | e1 ∈ t1, e2 ∈ t2,

id(e1) = id(e2)
}∣∣ (6)

Precision and recall are calculated as usual [53].

D. Methodology and Results

We run our experiments on a workstation with an Intel
Xeon E7-4880 processor with a frequency of 2.90GHz. In
order to reduce the influence of side-effects caused by ad-
ditional workload on the experimental workstation, we run
each algorithm 30 times on each of our experimental subjects,
except for Random, Loose, and Tight for which we follow the

TABLE II
COMPARISON OF ACHIEVED WEIGHTS AND RUNTIMES ACROSS ALL ALGORITHMS, AVERAGED OVER 30 RUNS FOR EACH SUBJECT.

Algorithm Hospital Warehouse Random Loose Tight Apo-Games
Weight Time (in s) Weight Time (in s) Weight Time (in s) Weight Time (in s) Weight Time (in s) Weight Time (in s)

RaQuN 4.92 0.08 [0.07, 0.12] 1.63 0.32 [0.27, 0.93] 1.04 0.07 [0.05, 0.13] 1.03 0.13 [0.07, 0.33] 0.94 0.07 [0.05, 0.11] 18.27 71.12 [41.30, 104.58]

NwM 4.49 20.64 [16.18, 24.22] 1.46 74.51 [29.53, 84.87] 0.80 24.00 [1.23, 76.02] 0.79 22.40 [1.12, 70.68] 0.88 39.75 [1.63, 66.60] 17.91 5,462.91 [3,742.22, 6,597.83]

Pairwise Ascending 4.49 0.31 [0.28, 0.44] 1.11 0.36 [0.33, 0.45] 0.79 0.21 [0.10, 0.31] 0.74 0.14 [0.08, 0.22] 0.94 0.22 [0.16, 0.34] 12.96 10.42 [9.32, 12.04]

Pairwise Descending 4.72 0.16 [0.14, 0.22] 1.27 0.36 [0.32, 0.53] 0.78 0.15 [0.10, 0.23] 0.74 0.14 [0.08, 0.25] 0.93 0.22 [0.17, 0.33] 16.40 10.68 [9.27, 13.50]

Algorithm PPU Structure PPU Behavior bCMS BCS ArgoUML
Weight Time (in s) Weight Time (in s) Weight Time (in s) Weight Time (in s) Weight Time (in s)

RaQuN 28.95 0.85 [0.81, 0.90] 164.53 18.32 [16.39, 20.34] 41.53 2.84 [1.40, 3.58] 51.17 12.58 [8.10, 18.22] 1727.65 2,647.76 [1,483.48, 3,324.70]

NwM 28.64 9.27 [7.84, 10.07] 146.35 4,616.30 [3,410.86, 5,919.65] 41.25 247.31 [227.52, 275.95] 43.20 330.25 [235.74, 388.45] - - - timeout - - -
Pairwise Ascending 28.65 0.27 [0.22, 0.38] 145.46 11.03 [10.32, 12.61] 39.76 1.16 [1.13, 1.21] 43.83 5.69 [3.85, 7.43] 1702.91 318.26 [297.43, 379.76]

Pairwise Descending 28.89 0.26 [0.21, 0.42] 142.56 10.84 [10.20, 13.01] 38.76 1.04 [1.01, 1.07] 47.16 4.84 [3.37, 6.73] 1710.25 314.88 [302.28, 329.35]

methodology of Rubin and Chechik [25]. Here, we select 10
subsets comprising 10 of the 100 models for each run that
is repeated 30 times, leading to 300 runs per algorithm and
subject. Regardless of the experimental subject, we permutate
the input models randomly for each experimental run. We set
a time-out of 12 hours for the matching of a dataset, due to
the large amount of experimental runs.

1) RQ1: Runtime and Weight Compared to Other Matching
Algorithms: Table II presents the average weight and runtime
achieved by the algorithms on each of our experimental
subjects. Here, we consider the weight metric as it does not
require a ground truth, which is not available for all datasets.

RaQuN and Pairwise are significantly faster than NwM.
While, on average, NwM requires between 9s and 75s for the
matching of smaller subjects (< 50 elements) PPU Structure
and Hospital through Tight, the other algorithms are able to
calculate a matching in less than a second. Matchings for
bCMS and BCS were calculated by RaQuN and Pairwise in
less than 13s, where NwM required 247s and 330s. Moreover,
NwM was not able to provide a matching for ArgoUML
before reaching the time-out of 12h, and it took about 90min
and 70min for processing Apo-Games and PPU Behavior,
respectively. In contrast, RaQuN provides a matching in an
average time of less than 45min for ArgoUML, 71s for Apo-
Games, and less than 30s for PPU Behavior.

When considering the achieved weights, RaQuN delivers
the matchings with the highest weights for all datasets. NwM
delivers higher weights than Pairwise for six of the eleven
datasets. Notably, ascending and descending Pairwise always
yield different weights, which confirms the observation by
Rubin and Chechik that performance of sequential two-way
matchers depends on the order of input models [25].

RaQuN is significantly faster than NwM on all datasets,
and is almost as fast as two-way matchers on medium-
sized datasets with hundreds of elements. Moreover, RaQuN
achieves the highest weights across all datasets.

2) RQ2: Configuration of the Candidate Search: In order to
assess how the configuration of the candidate search influences
RaQuN’s performance, we ran RaQuN with increasing values
of k′ for the nearest neighbor search. Fig. 3 presents the
results of the runs conducted on the datasets PPU, bCMS,
and ArgoUML. The plots display the value of k′ against the
runtime of RaQuN. The red line marks the k′ at which the

candidate search retrieved all match candidates necessary to
reach the peak weight performance of RaQuN. The blue line
marks the k′ that is equal to the number of models n, which
we propose as a possible heuristic for k′.

Our findings show that setting k′ = n made it possible to
achieve the best matching possible with RaQuN. RaQuN was
able to find the best candidates with small values of k′, due
to multiple elements being mapped to the same neighboring
point in the vector space, and due to considering the neighbors
for each element individually. Selecting a higher value for k′

does not deteriorate the match quality, because the final match
decision depends on shouldMatch. Moreover, the runtime of
RaQuN shows a linear growth with higher k′, which indicates
that considering more neighbors than necessary will not cause
a sudden increase in runtime.

Table III presents an overview of how many comparisons
are saved by the candidate search (using k′=n). For most
experimental subjects, RaQuN is able to reduce the number
of comparisons by more than 90%. PPU is the only subject
on which we achieve a rather low reduction of 48.5%. This is
due to the high similarity between the elements, and the fact
that the models are relatively small.

With the heuristic choice of k′=n, RaQuN retrieves enough
candidates for good matches, while still reducing the number
of element comparisons by more than 90% for most experi-
mental subjects.

TABLE III
NUMBER OF ELEMENT COMPARISONS THAT ARE SAVED BY RAQUN WITH

k′=n. THE REDUCTION IS ACHIEVED THROUGH RAQUN’S NEAREST
NEIGHBOR SEARCH ON A MULTIDIMENSIONAL TREE.

Dataset Full N-Way Matching RaQuN
#Comparisons #Comparisons Saved

Hospital 21,211 1,229 94.2%
Warehouse 70,037 6,408 90.9%
Random 33,600 2,499 92.6%
Loose 26,244 2,670 89.8%
Tight 25,237 2,215 91.2%
PPU Structure 80,620 41,533 48.5%
PPU Behavior 3,814,644 259,827 93.2%
bCMS 416,571 106,585 74.4%
BCS 939,346 253,862 73.0%
ArgoUML 64,521,622 481,179 99.3%
Apo-Games 750,319 31,880 95.8%

Fig. 3. Impact of an increasing number of neighbors considered for matching on the performance of RaQuN.

Fig. 4. Average precision, recall and runtime of RaQuN, NwM, and Pairwise on subsets of ArgoUML with increasing size.

3) RQ3: Scalability with Growing Size of Input Models:
As already mentioned, realistic applications of n-way matching
in practice typically have to deal with large models but only
a few model variants. Thus, we are primarily interested in
how the algorithms scale with growing model sizes for a fixed
number of model variants. Answering this question requires
experimental subjects with a stepwise size increase, and cannot
be answered by only considering the results shown in Table II.

To that end, in addition to the experimental subjects in-
troduced in Section V-B, we generated subsets of ArgoUML,
which comprises the largest models of our subjects. All subsets
have the same number of models as ArgoUML but vary in the
number of elements. The number of elements in each subset
is a fixed percentage between 5% and 100% of the number
of elements in ArgoUML. We increased the percentages in
5% steps and generated 30 subsets for each percentage, in
addition to 30 subsets with 1% of elements. The sub-models
are generated as follows. First, we randomly select a subset
of classes from the set of all classes of a given model such
that the subset contains the desired percentage of the overall
number of classes. We repeat this for each model in ArgoUML
so that the number of models remains the same. Second, we
eliminate properties corresponding to dangling references in
the selected classes, such that no typed property references a
class which is not contained in the subset of selected classes.

The results of our scalability analysis on these subsets
are shown in Fig. 4. The leftmost plot presents the average
logarithmic runtimes of the algorithms for each subset size. We
observe that the runtime of NwM increases rapidly with the

subset size. NwM requires more than 60 minutes on average
to compute a matching on the 15% subsets. This confirms
that it is not feasible to match larger models with NwM. In
contrast, it is still feasible to run RaQuN and Pairwise on
the full ArgoUML models. For matching the full models (cf.
Table II), the average runtime of RaQuN was less than 45
minutes, making it slower than Pairwise, but still feasible.

Yet, faster runtimes are usually achieved at the cost of
matching quality. Therefore, we also evaluate the quality of the
computed matchings to confirm that RaQuN delivers matches
of higher quality than Pairwise on all subsets. To asses the
quality, we cannot use the weight metric because the weight
of a match directly depends on the size of the match. Weights
are thus not comparable across (sub-)models of increasing size.
Instead, we assess precision and recall, which is possible for
ArgoUML due to the availability of a ground truth.

The precision achieved by the different algorithms is pre-
sented in the central plot of Fig. 4. On the subset with only
1% of elements, the matching precision of all approaches
lies at roughly 0.1. With increasing subset size, we note a
significant difference in precision when we compare the n-way
and sequential two-way approaches. Moreover, we can observe
a slightly higher precision for RaQuN in comparison to NwM.
The n-way algorithms deliver more precise matchings because
Pairwise does not consider all possible match candidates for
an element at once and therefore may form worse matches.

Lastly, the rightmost plot of Fig. 4 shows the recall achieved
by the algorithms. For all algorithms, the recall first drops with
increasing subset size and then rises again after reaching a sub-

set size between 30% and 50%, depending on the algorithm.
The reason for this is that, according to our ArgoUML subset
generation, the number of elements initially grows faster than
the number of properties of each element. The latter depends
on the occurrence of other types in the model which may
not be included in the sub-model yet. As a consequence,
some matches are missed. While this effect is only barely
noticeable for RaQuN, it is prominent for NwM and Pairwise.
The comparably high recall achieved by RaQuN indicates
that the vectorization is able to mitigate this effect. On the
other hand, Pairwise shows a larger drop in recall, as forming
incorrect matches (see precision) can additionally impair its
ability to find all correct matches. To our surprise, the recall
of NwM drops significantly more than the recall of Pairwise.
We assume that the optimization step of NwM, which may
split already formed matches into smaller ones, accounts for
a higher loss in recall.

As opposed to NwM, RaQuN shows good scaling properties
for models of increasing size, up to the largest models of our
experimental subjects containing more than 10,000 elements
in total. This is comparable to Pairwise, and an indicator
that RaQuN’s typical scaling behavior is considerably better
than its theoretical worst case complexity. At the same time,
RaQuN is able to deliver matchings of higher quality (w.r.t.
precision and recall).

E. Threats to Validity

Our experiments rely on evaluation metrics that may affect
the construct validity of the results. First, we use the weight
metric which has already been used in prior studies [25].
While it can be applied to compare the results on the same
subject, weights obtained for different experimental subjects
are hardly comparable. To that end, we use precision and
recall [53] in order to asses the quality of the matchings for
the ArgoUML subsets. The calculation of both depends on our
definition of true positives, false positives, and false negatives.
Here, we favored a pairwise comparison over a direct rating
of complete matches to rate almost correct matches better
than completely wrong matches. Another potential threat per-
tains the construction of ArgoUML subsets. Using unrelated
models of different size would introduce the bias of varying
characteristics of these models. Hence, we decided to remove
parts of the largest available system. While we argue that
this is the better choice, it is possible that the ArgoUML
subsets do not represent realistic models. Moreover, using the
product-line variants of ArgoUML, PPU, BCS, and bCMS as
experimental subjects could have introduced a bias because
these are derived from a clean and integrated code base,
lacking unintentional divergence [54]–[56]. Thus, while it is
common in the literature to use product-line datasets [50], [51],
[57], [58] as they inherently provide ground-truth matchings,
we also considered the clone-and-own system ApoGames.

Computational bias and random effects are a threat to the
internal validity. Other processes on the machine may affect
the runtime, but also the matching may differ in several runs

with the same input. The non-determinism of RaQuN is due to
the use of hash sets used in the implementation. Furthermore,
the order in which matches are merged may vary for identical
similarity scores. We mitigated those threats by repeating
every measurement 30 times, each with a different permutation
of the input models. Additionally, the random generation of
the ArgoUML subsets might have introduced a bias favoring
a particular algorithm. To mitigate this bias, we sampled
30 subsets for each subset size, totaling in 600 different
subsets included in the replication package. Faults in the
implementation may also affect the results. We implemented
several unit tests for each class of RaQuN’s implementation
and manually tested the quality of RaQuN and the evaluation
tools on smaller examples. Additionally, we resort to the
original implementations of NwM and Pairwise.

The question whether the results generalize to other sub-
jects, which first must be converted to element/property mod-
els, is a threat to the external validity. We mitigate this threat
by our selection of diverse experimental subjects. We used the
experimental subjects from the original evaluation of NwM,
for which Rubin and Chechik have already mitigated this
threat [25]. Moreover, we have experimented with additional
subjects covering (a) different domains, i.e., information sys-
tems (bCMS), industrial plant automation (PPU), automotive
software (BCS), software engineering tools (ArgoUML), and
video games (Apo-Games), (b) different origins, i.e., academic
case studies on model-based software product lines (PPU,
BCS, bCMS), a software product line which has been re-
verse engineered from a set of real-world software variants
written in Java (ArgoUML), and a set of variants developed
using clone-and-own (Apo-Games), and (c) different model
types, i.e., UML class diagrams (bCMS, ArgoUML), SysML
block diagrams and UML statemachines (PPU), and compo-
nent/connector models (BCS).

VI. RELATED WORK

Traditional matchers are two-way matchers which can be
classified into signature-based, similarity-based, and distance-
based approaches. Signature-based approaches match elements
which are “identical” concerning their signature [59], typically
a hash value which comprises conceptual properties (e.g.,
names) or surrogates (e.g., persistent identifiers). Similarity-
based matching algorithms try to match the most similar but
not necessarily equal model elements [7]–[11], [17]. Distance-
based approaches try to establish a matching which yields a
minimal edit distance [12]–[16], [18]. Among these categories,
signature-based matching is the only one which could be easily
generalized to the n-way case. However, the limitations of
signatures have been extensively discussed [8], [9], [31]–[33].

A few approaches realize n-way matching by the repeated
two-way matching of the input artifacts [19]–[24]. However,
as reported by Rubin and Chechik [25] and now confirmed by
our empirical evaluation, this may yield sub-optimal or even
incorrect results as not all input artifacts are considered at the
same time [21], [25].

To the best of our knowledge, Rubin and Chechik are the
only ones who have studied the simultaneous matching of
n input models [25]. Their algorithm called NwM applies
iterative bipartite graph matching whose insufficient scalability
motivated our research. RaQuN is radically different from
NwM. It is the first algorithm applying index structures (i.e.,
multi-dimensional search trees) to simultaneous n-way model
matching (Phase 1 and Phase 2 in Alg. 1). Even without
these phases, the matching (Phase 3) differs from NwM by
abstaining from bipartite graph-matching, reducing the worst-
case complexity (see Section III-C).

Our usage of multi-dimensional search trees is inspired by
Treude et al. [31]. While they discuss basic ideas of how
model elements can be mapped onto numerical vectors in the
context of two-way matching, the actual matching problem
was not even addressed but delegated to an existing two-way
matcher. Moreover, a dedicated vectorization function needs to
be provided for all types of model elements, while we work
with a vectorization which is domain-agnostic.

All approaches to both n-way and two-way matching as-
sume matches to be mutually disjoint and that no two elements
of a match belong to the same input model. This is a
reasonable assumption which we adopt in this paper to ensure
the comparability of RaQuN with the state-of-the-art. The only
exception which deviates from this assumption is the distance-
based two-way approach presented by Kpodjedo et al. [60],
which extends an approximate graph matching algorithm to
handle many-to-many correspondences. Regarding the ground
truth matchings of our experimental subjects obtained from
product lines, there is no need for such an extension of n-
way matching algorithms. However, it might be a valuable
extension for some use cases (e.g., for comparing models at
different levels of abstraction) which we leave for future work.

Several approaches which can be characterized as merge
refactoring have been proposed in the context of migrating a
set of variants into an integrated software product line. Starting
from a set of “anchor points” which indicate corresponding
elements, the key idea is to extract the common parts in
a step-wise manner through a series of variant-preserving
refactorings [26], [39], [46], [58], [61]–[66]. Anchor points
may be determined through clone detection [39], [62]–[64] or
conventional matchers [26], [46], [61], [65], [66], and may
be corrected and improved by the merge refactoring. How-
ever, such implicit calculations of optimized n-way matchings
require extensive catalogues of language-specific refactoring
operations which have to be specified manually [46], [63]–
[65]. Merge refactoring approaches are complementary to our
approach, because they require sufficiently accurate matchings
as input to avoid prohibitive computational efforts during
refactoring [46].

Another approach for managing cloned software variants
has been presented by Linsbauer et al. [30], [51]. They use
combinatorics of feature configurations to map features to
parts of development artifacts, which implicitly establishes
n-way matchings. Similarly, implicit n-way matchings are
established through extracting product-line architectures as,

e.g., proposed by Assunção et al. [27]. However, the required
additional information such as complete feature configurations
is typically not available.

Finally, Babur et al. [28], [29] cluster models in model
repositories for the sake of repository analytics. They translate
models into a vector representation to reuse clustering distance
measures. However, clustering is performed on the granular-
ity level of entire models, while our candidate initialization
clusters individual model elements. In fact, as shown by
Wille et al. [67], both may be used complementary by first
partitioning a set of model variants and then performing a
fine-grained n-way matching on clusters of similar models.

VII. CONCLUSION AND FUTURE WORK

Model matching is a major requirement in many fields,
including extractive software product-line engineering and
multi-view integration. In this paper, we proposed RaQuN,
a generic algorithm for simultaneous n-way model matching
which scales for large models. We achieved this by indexing
model elements in a multi-dimensional search tree which
allows for efficient range queries to find the most suitable
matching candidates. We are the first to provide a thorough
investigation of n-way model matching on large-scale subjects
(ArgoUML) and a real-world clone-and-own subject (Apo-
Games). Compared to the state-of-the-art, RaQuN is an order
of magnitude faster while producing matchings of better
quality. RaQuN makes it possible to adopt simultaneous n-
way matching in practical model-driven development, where
models serve as primary development artifacts and may easily
comprise hundreds or even thousands of elements.

Our roadmap for future work is threefold. First, regard-
ing the various variations points of the generic matching
algorithm, we plan an in-depth investigation of RaQuN’s
configurability w.r.t. potential domain-specific optimizations.
For example, RaQuN could be adjusted to specific require-
ments of different application scenarios and characteristics
of different types of models. Second, RaQuN, Pairwise, and
NwM only support matching one element of a model to at
most one element of each other model (1-to-1). This might
limit the possibility to find the correct matches in certain
cases (e.g., an element was split into several smaller elements).
Therefore, from a more general point of view, we want to
extend simultaneous n-way model matching to support n-
to-m matches for which we believe that RaQuN serves as
a promising basis to enter and explore this new aspect of
n-way matching. Third, in accordance with the state-of-the-
art, RaQuN forms mutually disjoint matches. Therefore, an
element belongs to at most one match and no alternative
matches for an element are computed. We plan on supporting
scenarios in which several match proposals instead of a single
exact match for a specific element are desired (e.g., scenarios
in which a user interactively selects the most suitable match
for an element).

ACKNOWLEDGMENT

We used Matplotlib [68] to create the plots that are shown
in Fig. 3 and Fig. 4.

REFERENCES

[1] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and
K. Czarnecki, “An Exploratory Study of Cloning in Industrial Software
Product Lines,” in Proc. Europ. Conf. on Software Maintenance and
Reengineering (CSMR). IEEE, 2013, pp. 25–34.

[2] S. Feldmann, J. Fuchs, B. Vogel-Heuser et al., “Modularity, variant and
version management in plant automation–future challenges and state of
the art,” in Proceedings of the 12th International Design Conference,
Dubrovnik, Croatia, 2012, pp. 1689–1698.

[3] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software
engineering in practice,” Synthesis lectures on software engineering,
vol. 3, no. 1, pp. 1–207, 2017.

[4] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki,
and A. Wąsowski, “A Survey of Variability Modeling in Industrial
Practice,” in Proc. Int’l Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS). ACM, 2013, pp. 7:1–7:8.

[5] T. Mens, “A State-of-the-Art Survey on Software Merging,” IEEE Trans.
Software Engineering (TSE), vol. 28, no. 5, pp. 449–462, May 2002.

[6] M. Sabetzadeh and S. Easterbrook, “View Merging in the Presence of
Incompleteness and Inconsistency,” Requirements Engineering, vol. 11,
no. 3, pp. 174–193, 2006.

[7] Z. Xing and E. Stroulia, “UMLDiff: An Algorithm for Object-Oriented
Design Differencing,” in Proc. Int’l Conf. on Automated Software
Engineering (ASE). ACM, 2005, pp. 54––65.

[8] U. Kelter, J. Wehren, and J. Niere, “A Generic Difference Algorithm
for UML Models.” Software Engineering, pp. 105–116, 2005.

[9] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity Flooding: A
Versatile Graph Matching Algorithm and Its Application to Schema
Matching,” in Proc. Int’l Conf. on Data Engineering (ICDE). IEEE,
2002, pp. 117–128.

[10] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave,
“Matching and Merging of Statecharts Specifications,” in Proc. Int’l
Conf. on Software Engineering (ICSE). IEEE, 2007, pp. 54—-64.

[11] C. Brun and A. Pierantonio, “Model Differences in the Eclipse Modeling
Framework,” The European Journal for the Informatics Professional,
vol. 9, no. 2, 2008.

[12] W. Miller and E. W. Myers, “A File Comparison Program,” Software:
Practice and Experience, vol. 15, no. 11, pp. 1025–1040, 1985.

[13] G. Canfora, L. Cerulo, and M. Di Penta, “Ldiff: An Enhanced Line
Differencing Tool,” in Proc. Int’l Conf. on Software Engineering (ICSE).
IEEE, 2009, pp. 595–598.

[14] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and M. Di Penta, “LHD-
iff: A Language-Independent Hybrid Approach for Tracking Source
Code Lines,” in Proc. Int’l Conf. on Software Maintenance (ICSM).
IEEE, 2013, pp. 230–239.

[15] B. Fluri, M. Wuersch, M. Pinzger, and H. Gall, “Change Distilling: Tree
Differencing for Fine-Grained Source Code Change Extraction,” IEEE
Trans. Software Engineering (TSE), vol. 33, no. 11, pp. 725–743, Nov.
2007.

[16] M. Kim, D. Notkin, and D. Grossman, “Automatic Inference of Struc-
tural Changes for Matching Across Program Versions,” in Proc. Int’l
Conf. on Software Engineering (ICSE). IEEE, 2007, pp. 333–343.

[17] T. Apiwattanapong, A. Orso, and M. J. Harrold, “A Differencing Algo-
rithm for Object-Oriented Programs,” in Proc. Int’l Conf. on Automated
Software Engineering (ASE). IEEE, 2004, pp. 2–13.

[18] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, “Fine-
Grained and Accurate Source Code Differencing,” in Proc. Int’l Conf.
on Automated Software Engineering (ASE), 2014, pp. 313–324.

[19] D. Wille, S. Schulze, C. Seidl, and I. Schaefer, “Custom-Tailored
Variability Mining for Block-Based Languages,” in Proc. Int’l Conf.
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2016, pp. 271–282.

[20] D. Wille, S. Schulze, and I. Schaefer, “Variability Mining of State
Charts,” in Proc. Int’l Workshop on Feature-Oriented Software Devel-
opment (FOSD). ACM, 2016, pp. 63–73.

[21] S. Duszynski, “Analyzing Similarity of Cloned Software Variants Using
Hierarchical Set Models,” Ph.D. dissertation, University of Kaiser-
slautern, 2015.

[22] B. Klatt and M. Küster, “Improving Product Copy Consolidation by
Architecture-Aware Difference Analysis,” in Proc. Int’l Conf. on Quality
of Software Architectures (QoSA). ACM, 2013, pp. 117–122.

[23] U. Ryssel, J. Ploennigs, and K. Kabitzsch, “Automatic Library Migra-
tion for the Generation of Hardware-In-The-Loop Models,” Science of
Computer Programming (SCP), vol. 77, no. 2, pp. 83–95, 2012.

[24] A. Schlie, S. Schulze, and I. Schaefer, “Recovering Variability Infor-
mation from Source Code of Clone-and-Own Software Systems,” in
Proc. Int’l Working Conf. on Variability Modelling of Software-Intensive
Systems (VaMoS). ACM, 2020, pp. 1–9.

[25] J. Rubin and M. Chechik, “N-Way Model Merging,” in Proc. Eu-
rop. Software Engineering Conf./Foundations of Software Engineering
(ESEC/FSE). ACM, 2013, pp. 301–311.

[26] D. Reuling, U. Kelter, S. Ruland, and M. Lochau, “SiMPOSE-
Configurable N-Way Program Merging Strategies for Superimposition-
Based Analysis of Variant-Rich Software,” in Proc. Int’l Conf. on
Automated Software Engineering (ASE). IEEE, 2019, pp. 1134–1137.

[27] W. K. G. Assunção, S. R. Vergilio, and R. E. Lopez-Herrejon, “Auto-
matic Extraction of Product Line Architecture and Feature Models from
UML Class Diagram Variants,” J. Information and Software Technology
(IST), vol. 117, p. 106198, 2020.

[28] Ö. Babur, “Statistical Analysis of Large Sets of Models,” in Proc. Int’l
Conf. on Automated Software Engineering (ASE). ACM, 2016, pp.
888–891.

[29] Ö. Babur and L. Cleophas, “Using N-Grams for the Automated Cluster-
ing of Structural Models,” in Proc. Conf. on Current Trends in Theory
and Practice of Computer Science (SOFSEM). Springer, 2017, pp.
510–524.

[30] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “The
ECCO Tool: Extraction and Composition for Clone-and-Own,” in Proc.
Int’l Conf. on Software Engineering (ICSE). IEEE, 2015, pp. 665–668.

[31] C. Treude, S. Berlik, S. Wenzel, and U. Kelter, “Difference Com-
putation of Large Models,” in Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering (ESEC/FSE). ACM, 2007,
pp. 295–304.

[32] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige, “Different
Models for Model Matching: An Analysis of Approaches to Support
Model Differencing,” in Proc. of the Workshop on Comparison and
Versioning of Software Models (CVSM). IEEE, 2009, pp. 1–6.

[33] T. Kehrer, U. Kelter, P. Pietsch, and M. Schmidt, “Adaptability of
Model Comparison Tools,” in Proc. Int’l Conf. on Automated Software
Engineering (ASE). ACM, 2012, pp. 306–309.

[34] Y. T. Rad and R. Jabbari, “Use of Global Consistency Checking for
Exploring and Refining Relationships between Distributed Models: A
Case Study,” Master’s thesis, Blekinge Institute of Technology, School
of Computing, 2012.

[35] B. Vogel-Heuser, C. Legat, J. Folmer, and S. Feldmann, “Researching
Evolution in Industrial Plant Automation: Scenarios and Documentation
of the Pick and Place Unit,” Institute of Automation and Information
Systems, TU München, Tech. Rep., 2014.

[36] A. Capozucca, B. Cheng, N. Guelfi, and P. Istoan, “OO-SPL Modelling
of the Focused Case Study,” in Proc. Int’l Workshop on Comparing
Modeling Approaches (CMA). ACM, 2011.

[37] S. Lity, R. Lachmann, M. Lochau, and I. Schaefer, “Delta-oriented
Software Product Line Test Models - The Body Comfort System Case
Study,” Technische Universität Braunschweig, Tech. Rep., 2012.

[38] J. Martinez, W. K. G. Assunção, and T. Ziadi, “ESPLA: A Catalog
of Extractive SPL Adoption Case Studies,” in Proc. Int’l Systems and
Software Product Line Conf. (SPLC). ACM, 2017, pp. 38–41.

[39] J. Rubin, K. Czarnecki, and M. Chechik, “Managing Cloned Variants:
A Framework and Experience,” in Proc. Int’l Systems and Software
Product Line Conf. (SPLC). ACM, 2013, pp. 101–110.

[40] S. Wenzel, “Unique identification of elements in evolving software
models,” Software and System Modeling (SoSyM), vol. 13, no. 2, pp.
679–711, 2014.

[41] J. L. Bentley, “Multidimensional Binary Search Trees Used for Asso-
ciative Searching,” Comm. ACM, vol. 18, no. 9, pp. 509–517, 1975.

[42] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An Algorithm for Find-
ing Best Matches in Logarithmic Expected Time,” ACM Transactions
on Mathematical Software (TOMS), vol. 3, no. 3, pp. 209––226, 1977.

[43] A. Schultheiß, P. M. Bittner, L. Grunske, T. Thüm, and T. Kehrer,
“Artifact: Scalable N-Way Model Matching Using Multi-Dimensional
Search Trees,” Jul. 2021. [Online]. Available: https://doi.org/10.5281/
zenodo.5150388

https://doi.org/10.5281/zenodo.5150388
https://doi.org/10.5281/zenodo.5150388

[44] S. Daniel F. Savarese, “libssrckdtree-j,” Source Code, available online at
https://www.savarese.com/software/libssrckdtree-j/; visited on Decem-
ber 28, 2020.

[45] H. W. Kuhn, “The Hungarian Method for the Assignment Problem,”
Nordic J. Computing, vol. 2, no. 1-2, pp. 83–97, 1955.

[46] D. Reuling, M. Lochau, and U. Kelter, “From imprecise n-way model
matching to precise n-way model merging,” J. Object Technology (JOT),
vol. 18, no. 2, 2019.

[47] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy, “Evolution of
Software in Automated Production Systems: Challenges and Research
Directions,” J. Systems and Software (JSS), vol. 110, pp. 54–84, 2015.

[48] J. Bürdek, T. Kehrer, M. Lochau, D. Reuling, U. Kelter, and A. Schürr,
“Reasoning about Product-Line Evolution Using Complex Feature
Model Differences,” Automated Software Engineering, vol. 23, no. 4,
pp. 687–733, 2015.

[49] A. Capozucca, B. Cheng, G. Georg, N. Guelfi, P. Istoan, G. Mussbacher,
A. Jensen, J.-M. Jézéquel, J. Kienzle, J. Klein et al., “Requirements Def-
inition Document for a Software Product Line of Car Crash Management
Systems,” The Repository of Model-Driven Development (ReMoDD),
2011.

[50] C. Kästner, A. Dreiling, and K. Ostermann, “Variability Mining: Con-
sistent Semiautomatic Detection of Product-Line Features,” IEEE Trans.
Software Engineering (TSE), vol. 40, no. 1, pp. 67–82, 2014.

[51] L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “Variability Extrac-
tion and Modeling for Product Variants,” Software and System Modeling
(SoSyM), vol. 16, no. 4, pp. 1179–1199, Oct. 2017.

[52] J. Krüger, W. Fenske, T. Thüm, D. Aporius, G. Saake, and T. Leich,
“Apo-Games: A Case Study for Reverse Engineering Variability from
Cloned Java Variants,” in Proc. Int’l Systems and Software Product Line
Conf. (SPLC). ACM, Sep. 2018, pp. 251–256.

[53] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
New York, NY, USA: ACM, 1999, vol. 463.

[54] B. Klatt, M. Küster, and K. Krogmann, “A Graph-Based Analysis
Concept to Derive a Variation Point Design from Product Copies,” in
Proc. Int’l Workshop on Reverse Variability Engineering (REVE), 2013,
pp. 1–8.

[55] T. Schmorleiz and R. Lämmel, “Similarity Management via History
Annotation,” in Proc. Seminar on Advanced Techniques and Tools for
Software Evolution (SATToSE). Dipartimento di Informatica Università
degli Studi dell’Aquila, L’Aquila, Italy, 2014, pp. 45–48.

[56] T. Schmorleiz, “An Annotation-Centric Approach to Similarity Man-
agement,” Master’s thesis, Universität Koblenz-Landau, Germany, Feb.
2015.

[57] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. Le Traon,
“Bottom-Up Adoption of Software Product Lines: A Generic and
Extensible Approach,” in Proc. Int’l Systems and Software Product Line
Conf. (SPLC). ACM, 2015, pp. 101–110.

[58] T. Ziadi, C. Henard, M. Papadakis, M. Ziane, and Y. Le Traon, “Towards
a Language-Independent Approach for Reverse-Engineering of Software
Product Lines,” in Proc. ACM Symposium on Applied Computing (SAC).
ACM, 2014, pp. 1064–1071.

[59] P. Selonen and M. Kettunen, “Metamodel-Based Inference of Inter-
Model Correspondence,” in Proc. Europ. Conf. on Software Maintenance
and Reengineering (CSMR). IEEE, 2007, pp. 71–80.

[60] S. Kpodjedo, F. Ricca, P. Galinier, G. Antoniol, and Y.-G. Gueheneuc,
“Madmatch: Many-to-many approximate diagram matching for design
comparison,” IEEE Trans. Software Engineering (TSE), vol. 39, no. 8,
pp. 1090–1111, 2013.

[61] J. Rubin and M. Chechik, “Combining Related Products into Product
Lines,” in Proc. Int’l Conf. on Fundamental Approaches to Software
Engineering (FASE). Springer, 2012, pp. 285–300.

[62] T. Mende, R. Koschke, and F. Beckwermert, “An Evaluation of Code
Similarity Identification for the Grow-and-Prune Model,” J. Software
Maintenance and Evolution (JSME), vol. 21, no. 2, pp. 143–169, 2009.

[63] D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, and
J. Plöger, “RuleMerger: Automatic Construction of Variability-Based
Model Transformation Rules,” in Proc. Int’l Conf. on Fundamental
Approaches to Software Engineering (FASE). Springer, 2016, pp. 122–
140.

[64] W. Fenske, J. Meinicke, S. Schulze, S. Schulze, and G. Saake, “Variant-
Preserving Refactorings for Migrating Cloned Products to a Product
Line,” in Proc. Int’l Conf. on Software Analysis, Evolution and Reengi-
neering (SANER). IEEE, 2017, pp. 316–326.

[65] D. Reuling, U. Kelter, J. Bürdek, and M. Lochau, “Automated N-
Way Program Merging for Facilitating Family-Based Analyses of
Variant-Rich Software,” Trans. Software Engineering and Methodology
(TOSEM), vol. 28, no. 3, pp. 13:1–13:59, Jul. 2019.

[66] U. Ryssel, J. Ploennigs, and K. Kabitzsch, “Automatic Variation-Point
Identification in Function-Block-Based Models,” in Proc. Int’l Conf. on
Generative Programming and Component Engineering (GPCE). ACM,
2010, pp. 23–32.

[67] D. Wille, Ö. Babur, L. Cleophas, C. Seidl, M. van den Brand, and
I. Schaefer, “Improving Custom-Tailored Variability Mining Using Out-
lier and Cluster Detection,” Science of Computer Programming (SCP),
vol. 163, pp. 62–84, 2018.

[68] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

https://www.savarese.com/software/libssrckdtree-j/

	Introduction
	N-Way Matching
	Generic Matching Algorithm
	Description of the Algorithm
	Exemplary Illustration
	Worst-Case Complexity

	Configuration Options
	Candidate Initialization
	Candidate Search
	Candidate Matching

	Evaluation
	Selected Algorithms
	Prototypical Implementation of RaQuN
	Baseline Algorithms

	Experimental Subjects
	Experimental Subjects of Rubin and Chechik
	Variant Sets Generated from Software Product Lines
	Variant Sets Created Through Clone-and-Own

	Evaluation Metrics
	Weight
	Precision/Recall

	Methodology and Results
	RQ1: Runtime and Weight Compared to Other Matching Algorithms
	RQ2: Configuration of the Candidate Search
	RQ3: Scalability with Growing Size of Input Models

	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

