
The Journal of Systems and Software 215 (2024) 112087

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Beyond code: Is there a difference between comments in visual and textual
languages?✩

Alexander Boll a,∗, Pooja Rani b, Alexander Schultheiß c, Timo Kehrer a

a University of Bern, Switzerland
b University of Zurich, Switzerland
c Paderborn University, Germany

A R T I C L E I N F O

Dataset link: https://doi.org/10.5281/zenodo.5
259648, https://doi.org/10.6084/m9.figshare.
24631350

Keywords:
Documentation
Graphical
Diagram
Knowledge-transfer
Simulink
Model-driven engineering
Comment clones
Taxonomy

A B S T R A C T

Code comments are crucial for program comprehension and maintenance. To better understand the nature and
content of comments, previous work proposed taxonomies of comment information for textual languages, no-
tably classical programming languages. However, paradigms such as model-driven or model-based engineering
often promote the use of visual languages, to which existing taxonomies are not directly applicable. Taking
MATLAB/Simulink as a representative of a sophisticated and widely used modeling environment, we extend a
multi-language comment taxonomy onto new (visual) comment types and two new languages: Simulink and
MATLAB. Furthermore, we outline Simulink commenting practices and compare them to textual languages. We
analyze 259,267 comments from 9095 Simulink models and 17,792 MATLAB scripts. We identify the comment
types, their usage frequency, classify comment information, and analyze their correlations with model metrics.
We manually analyze 757 comments to extend the taxonomy. We also analyze commenting guidelines and
developer adherence to them. Our extended taxonomy, SCoT (Simulink Comment Taxonomy), contains 25
categories. We find that Simulink comments, although often duplicated, are used at all model hierarchy levels.
Of all comment types, Annotations are used most often; Notes scarcely. Our results indicate that Simulink
developers, instead of extending comments, add new ones, and rarely follow commenting guidelines. Overall,
we find Simulink comment information comparable to textual languages, which highlights commenting practice
similarity across languages.
1. Introduction

Code comments (hereinafter comments) are crucial in helping de-
velopers understand, maintain, extend source code (Xia et al., 2018;
Elshoff and Marcotty, 1982; Woodfield et al., 1981), and find loca-
tions of interest in the source code (Storey et al., 2009). High-quality
comments, therefore, have a high impact on lowering the development
cost and improving the quality of software (Raskin, 2005). Given the
importance of comments, researchers focused on many aspects of them,
e.g., automatically assessing comment quality (Rani et al., 2023c),
comment completion (Zhang et al., 2022), comment generation (Iyer
et al., 2016; Hu et al., 2018), to name only a few. Recently, researchers
explored the contents of class comments and categorized the various
information in them (Pascarella and Bacchelli, 2017; Zhang et al., 2018;
Rani et al., 2021). Building on this, Rani et al. (2021d) formulated a
taxonomy of comment information, called Class Comment Type Model

✩ Editor: Dr Alexander Chatzigeorgiou.
∗ Corresponding author.
E-mail addresses: alexander.boll@inf.unibe.ch (A. Boll), rani@ifi.uzh.ch (P. Rani), AlexanderSchultheiss@pm.me (A. Schultheiß), timo.kehrer@unibe.ch

(T. Kehrer).

(CCTM), containing types such as summaries, warnings, recommen-
dations, licensing information, etc. A complete taxonomy of comment
types is needed for further automation of tools handling comments.

Prior categorization efforts, however, were done on textual class
comments of object-oriented general-purpose languages (i.e., Python,
Java, and Smalltalk) only. On the contrary, little is known about com-
menting practices in language environments using visual paradigms,
such as Simulink (Pantelic et al., 2019; Jaskolka et al., 2021). In par-
ticular, the classification taxonomy from textual languages cannot be
directly transferred. Apart from the different paradigms, Simulink has
several ways to comment models, and the possibilities are more diverse
than purely textual comments (see Section 2.2). Furthermore, Simulink
models are often designed by non-software engineers (Abrahão et al.,
2017). Such domain experts may employ a unique commenting culture
when compared with more ‘‘classical’’ software engineers.
vailable online 9 May 2024
164-1212/© 2024 The Author(s). Published by Elsevier Inc. This is an open access a

https://doi.org/10.1016/j.jss.2024.112087
Received 25 November 2023; Received in revised form 16 March 2024; Accepted 2
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

8 April 2024

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
mailto:alexander.boll@inf.unibe.ch
mailto:rani@ifi.uzh.ch
mailto:AlexanderSchultheiss@pm.me
mailto:timo.kehrer@unibe.ch
https://doi.org/10.1016/j.jss.2024.112087
https://doi.org/10.1016/j.jss.2024.112087
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.112087&domain=pdf
http://creativecommons.org/licenses/by/4.0/

The Journal of Systems & Software 215 (2024) 112087A. Boll et al.

p

Choosing Simulink as one representative of visual languages –
Simulink is a mature software which is widely studied and employed
in several key industries (De Brito et al., 2011; Weiland and Manhart,
2014; Haghighatkhah et al., 2017; Liebel et al., 2014) – our overall
goal is twofold. We first aim at getting a better understanding of com-
menting practice in Simulink, before a comparison to textual languages
shall help us to build a bridge for transferring existing knowledge
from textual to visual programming languages. To that end, we study
Simulink comments and develop a classification taxonomy for them,
generalizing prior work to a visual language and its more diverse types
of comments. Thereupon, we compare major characteristics of Simulink
comments with those in the textual programming languages Python,
Java, and Smalltalk.

In our study, we first extract a collection of Simulink comments from
a large set of open-source Simulink projects (Shrestha et al., 2022).
Then, we study how Simulink projects are commented, which comment
features are used, where comments are present in the model and for
what purpose they are used. We manually classify a sample of our col-
lection according to the existing CCTM taxonomy (Rani et al., 2021d),
and extend it to make it suitable for Simulink comments, yielding the
Simulink Comment Taxonomy (SCoT). We also investigate, whether
model size, age, or complexity correlate with a model’s commenting
effort. As Simulink projects often feature MATLAB code, we include
the projects’ MATLAB code in our investigations where appropriate.
Then, we compare the commenting practices of Simulink and MATLAB
with the practices of the previously studied languages (Rani et al.,
2021d), to gauge differences and similarities between them. Finally,
we gather existing guidelines on MATLAB and Simulink and explore
whether developers follow them.

The main findings of our study are as follows. The Simulink com-
ment types are used in widely varying amounts, with Annotations
being the most frequent comment type, while Notes are rarely used.
Simulink comments are distributed evenly across all hierarchy depths,
apart from the top levels, where developers clearly put in the most
commenting effort. We found that size and complexity of a model
correlate with the number of comments and amount of total comments
of a model, but they do not correlate with the length of individual
comments. This indicates that, as a model grows, developers do not
add to existing comments, but create new comments instead. This un-
derlines previous observations that Simulink comments, once created,
hardly get revised (Jaskolka et al., 2021) and also supports the claim
that Simulink documentation becomes ‘‘rotten’’ (Pantelic et al., 2019).
Without adapting comments to an evolving model, developers risk that
comments become out of sync with the model — which is a well-
known concern from other programming languages (Rani et al., 2023c).
We also found that Simulink and MATLAB comment information is
highly similar in quality and quantity to previously studied comment
information in Java, Python, and Smalltalk. The comments of all these
languages cover mostly the same categories of our taxonomy, and these
categories also show a similar distribution in all of them. This implies
that, information-wise, the commenting cultures in Simulink and MAT-
LAB are not much different from the textual languages Java, Python,
and Smalltalk. We view this as an indicator that our extended taxonomy
SCoT can be employed in the categorization of other programming lan-
guages. Similarly, we expect knowledge-transfer, regarding comments,
between textual languages and visual languages and vice versa to be
possible. Further, we believe that many of our conclusions generalize
beyond Simulink to other languages and their tools. While analyzing
the commenting guidelines of Simulink and MATLAB, we found only
three, which developers rarely followed.

We summarize our contributions as follows:

• a qualitative and quantitative overview of Simulink commenting
practices in a large and diverse set of open source projects and
models;
2

• an empirically validated taxonomy, named SCoT (Simulink Com-
ment Taxonomy), classifying the information of Simulink and
MATLAB comments, also applicable for other languages;

• a comparison of Simulink and MATLAB comments to previously
studied languages;

• a publicly available dataset of extracted comments and classified
comments in the replication package,1 as well as all scripts used
in this work.

2. Background

2.1. Simulink

Simulink is a visual programming language developed by Math-
Works.2 Simulink offers a modeling environment for the simulation and
analysis of graphical block-oriented models of multi-domain dynamical
systems. It offers a high versatility through its many toolboxes for
different scenarios and domains (e.g., from theoretical simulation3 to
control of tangible systems,4 in as different domains as solar power
grids De Brito et al., 2011 to automotive Weiland and Manhart, 2014).
Simulink is a widely used modeling language for industrial-scale cyber–
physical systems (Haghighatkhah et al., 2017; Liebel et al., 2014) and
is widely studied by researchers (Boll et al., 2022).

A Simulink model is a data flow graph with vertices and edges.
While the edges are represented as signal lines, the vertices are different
kinds of blocks. Fig. 1 shows two views of an example model with
its blocks connected by signal lines. Each block of a Simulink model
transforms its input signals into output signals, giving a data flow-
oriented model. A signal’s arrowhead next to a block signifies an input;
the side without an arrowhead is an output of that block.

To manage the size and complexity of a large model, it can be
divided hierarchically into subsystems. Each subsystem can contain
further blocks, lines, and other subsystems, recursively. Simulink then
shows the view of the model by only presenting blocks of the currently
selected subsystem and hiding blocks nested in other subsystems. The
model in Fig. 1 has two views: the outer view with its subsystem high-
lighted in apricot (Fig. 1(a)) and the view from inside the subsystem
(Fig. 1(b)).

2.2. Simulink comments

Some early research claimed that models do not need documenta-
tion because ‘‘models are documentation’’ and models are less ambigu-
ous than textual documentation (Barnard, 2005). Today, however, the
need for a model’s documentation, has become clear (Pantelic et al.,
2019).

In this work, following the usual distinction between internal and
external documentation (Mall, 2018; Prana et al., 2019; Aghajani et al.,
2020), we focus on internal documentation directly integrated into the
Simulink suite. Such documentation cannot get ‘‘lost’’ because it is in
direct association with the model and will, by necessity, be as current as
the model itself. Moreover, previous work on traditional programming
languages has shown that developers embed various types of informa-
tion in internal documentation (Elshoff and Marcotty, 1982; Woodfield
et al., 1981), which is often considered more trustworthy compared
to all other sources of documentation (such as README files, user
manuals, etc.) (Maalej et al., 2014).

There are multiple ways of internally documenting Simulink mod-
els. At the time of writing, Simulink supports the following documen-
tation types, which we will describe in detail below: Model Description,

1 https://doi.org/10.6084/m9.figshare.24631350
2 https://www.mathworks.com/
3 https://www.mathworks.com/help/mpc/ug/control-of-an-inverted-

endulum-on-a-cart.html
4 https://www.mathworks.com/help/aeroblks/quadcopter-project.html

https://doi.org/10.6084/m9.figshare.24631350
https://www.mathworks.com/
https://www.mathworks.com/help/mpc/ug/control-of-an-inverted-pendulum-on-a-cart.html
https://www.mathworks.com/help/mpc/ug/control-of-an-inverted-pendulum-on-a-cart.html
https://www.mathworks.com/help/aeroblks/quadcopter-project.html

The Journal of Systems & Software 215 (2024) 112087A. Boll et al.
Fig. 1. Two views of an exemplary model. The model computes the functions 𝑜𝑢𝑡1 = 𝑖 + 1 and 𝑜𝑢𝑡2 = 𝜋𝑟2. The implementation of the functions is accessible and editable in the
subsystem view in Fig. 1(b) and hidden from the outside view in Fig. 1(a).
D

Element Description, Annotation, DocBlock, and Note. As internal docu-
mentation in textual languages is usually referred to as code comments,
we use the term ‘‘comment’’ for instances of internal Simulink docu-
mentation, even though they offer much more versatility than classical
comments in textual programming languages. In the sequel, we still
draw a comparison to textual comment types from both a reference and
a usability perspective, so that the reader can get a better understanding.
Before delving into the comparisons, it is important to note that these
are not meant to be scientifically rigorous analyses. Instead, they are
intended to offer some preliminary insights and intuition. A comment
viewed from the reference perspective is the part or parts of a model the
comment is about. Comments in textual and visual languages are thus
comparable, if they reference comparable parts of a program or model,
e.g., a single code line and a single model element, or the whole code
file and the whole model. The usability perspective, on the other hand, is
about how developers are able to notice, access, and edit a comment.

Model Description: A model can be given a single, designated textual
description, which is only accessible after four mouse clicks in
a popup window from Simulink’s menu, and is not displayed in
the main graphical view of a model (c.f . Fig. 2(b)). Reference-
wise, the closest analogy in classical programming languages are
class comments or header comments, as there is only a single
Model Description to describe the whole model. Usability-wise,
the closest parallel in classical languages are README files or
other external documentation, but Model Descriptions are an
actual part of the Simulink model file.

Element Description: An element’s description is associated to its
model element (block, signal, bus). Users can describe the
element, its usage, or context in more detail. An element’s
description text can only be accessed with two mouse clicks in
a separate popup window (c.f . Fig. 2(c)). Reference-wise, we
view Element Descriptions as most similar to inline comments,
as they refer to single model elements, which are comparable to
a short line of code. Usability-wise, there is no clear parallel we
3

know of.
Annotation: An Annotation is a special area, placed in a model. These
areas are mainly used to hold textual comments. They can also
be colored and thus highlight a part of a model or even hold im-
ages. Annotations can also be linked to another model element,
so the connection stays, even if the element is moved and the
Annotation is not located nearby, anymore. Annotations are the
only comment type of Simulink whose content is directly visible
and editable in the model view. The champagne Annotation
shown in Fig. 2(a) highlights and explains a specific part of
the model; the light blue Annotation gives the title of the view,
further explanation, and shows various equations. There is also
a small Annotation with a picture located on top of the light blue
Annotation. Annotations can be used for model interaction, like
holding a hyperlink to another subsystem or starting the model’s
simulation. Reference-wise, Annotations could be used like ev-
ery type of code comment, due to their great versatility: a tiny
Annotation next to a block like an inline comment, up to bigger
Annotations describing a whole view or model, like a function
or class comment. Usability-wise, they mimic all types of code
comments, because of their immediacy, while additionally text
formatting, pictures, and interactivity are possible.

ocBlock: A DocBlock is a special block in a Simulink model, which
holds an embedded txt/html/rtf comment. As such, it can be
used for longer and formatted comments. Two DocBlocks are
part of the model in Fig. 2(a) in apricot color. Although the
DocBlock, as a block, is part of the graphical model view, its text
can only be accessed in a separate editor window (c.f . Fig. 2(d)),
after a double click. Reference-wise, we view DocBlocks as most
similar to function comments, because the DocBlock refers to a
whole subsystem, which is comparable to a function. Usability-
wise, DocBlocks work similarly to a clickable code comment
hyperlink, which can be followed to some external documen-
tation (this is sometimes used in, e.g., JavaDocs), while the
DocBlock and its content still is embedded in the Simulink model
file itself.

The Journal of Systems & Software 215 (2024) 112087A. Boll et al.
Fig. 2. Examples of Simulink comment types.
1
2
3
4
5
6
7
8
9

10
11
Note: Simulink Notes are a mix of external and internal documenta-
tion. On the one hand, they are deeply integrated into the IDE.
On the other hand, they are saved as external documentation
files, only associated to a model file. A Note’s textual content
can be accessed with three mouse clicks in a separate editor
window in the Simulink IDE, next to the model. Notes are
more powerful than the other types, as they follow the model
hierarchy. Depending on the current view of the model, a Note
can show appropriate content only concerning this view. Thus,
a single Note can be seen as a set of comments on classes
or functions, reference-wise. Usability-wise, there is no clear
parallel in classical languages. As our dataset lacks instances of
Notes, we do not depict any in Fig. 2.

2.3. MATLAB comments

The MATLAB programming language uses textual representation
for its source code. This means, the script files feature comments,
similar to other textual programming languages. As Simulink models
are often combined with MATLAB code in a project, we have the
opportunity to study comments from bilingual projects in our work.
MATLAB comments start from the %-symbol until the end of a line, or
embrace comment text in between %{ and %} brackets for multi-line
comments. Listing 1 shows parts of a MATLAB source code file with
several comments: the first multi-line comment from lines 1 to 4 gives
a title and author information. The comments in lines 6 and 9 are short
inline comments.
4

%{

Logger control for <project title>

<Author Name>

%}

% Initialize Log

if enable_log

set_param('Log ', 'logging ', 'on ');
else %enable_log == 0

set_param('Log ', 'logging ', 'off ');
end

Listing 1: Exemplary MATLAB source code showing a
multi-line comment at the top and two shorter inline comments.

2.4. Simulink and MATLAB comment guidelines

We searched the official guidelines for High-Integrity Systems (G1),5
and by the MathWorks Advisory Board (G2),6 for instructions on how
and when to comment in MATLAB or Simulink.

While G1 aims for ‘‘models that are complete, unambiguous, stati-
cally deterministic, robust, and verifiable’’, it does not provide advice

5 https://www.mathworks.com/help/pdf_doc/simulink/simulink_hi_
guidelines.pdf

6 https://www.mathworks.com/help/pdf_doc/simulink/simulink_mab_
guidelines.pdf

https://www.mathworks.com/help/pdf_doc/simulink/simulink_hi_guidelines.pdf
https://www.mathworks.com/help/pdf_doc/simulink/simulink_hi_guidelines.pdf
https://www.mathworks.com/help/pdf_doc/simulink/simulink_mab_guidelines.pdf
https://www.mathworks.com/help/pdf_doc/simulink/simulink_mab_guidelines.pdf

The Journal of Systems & Software 215 (2024) 112087A. Boll et al.

R

R

R

on Simulink comments and gives only four guidelines regarding MAT-
LAB comments. himl_0001 requests to use a standardized header
comment, himl_0003 requests a comment density of 0.2 comment
lines per line of code, hisl_0038 asks for comment preservation
in generated code, and himl_0006/himl_0007 demands ‘‘meaning-
ful’’ comments for if/else and switch statements. Note that the else
statement of line 9 in Listing 1 is artificially commented by us.

One of the three aims of G2 is readability, which is further clarified
as ‘‘improve readability of functional analysis, prevent connection mis-
takes, comments, etc’’. Still, we only found three guidelines related to
Simulink documentation: db_0140 display custom block parameters
explicitly in the diagram, db_0043 use consistent fonts and appear-
ance settings across project, and jc_0603 comment the model layer
with a description. G2 also remarks that ‘using Annotations [to group
logically related parts as virtual objects] makes [the model] easier to
understand’.

2.5. The class comment type model (CCTM)

Identifying the kinds of information embedded in code comments
can support developers in various development and maintenance tasks,
e.g., an automatic comment classificator or updater would need a
complete taxonomy of comment types. Therefore, researchers put a
lot of effort in classifying code comments, building code comment
taxonomies. Based on taxonomies for textual programming languages,
like Java, Python, and Smalltalk (Pascarella and Bacchelli, 2017; Zhang
et al., 2018; Rani et al., 2021), Rani et al. (2021d) presented a
taxonomy of class comments, called the Class Comment Type Model
(CCTM). Rani et al. use the standard definition of classes in object-
oriented languages, i.e., classes represent blueprints for building in-
stances (Wirfs-Brock and McKean, 2003). Class comments are expected
to hold various information (Nurvitadhi et al., 2003; Pascarella and
Bacchelli, 2017; Zhang et al., 2018; Rani et al., 2021,d), from high-level
design to low-level implementation details (Nurvitadhi et al., 2003).
The CCTM can be used to classify class comments into the following
higher-level categories:

Purpose: A summary of the code’s intent, further explanation of how
the code works, or its rationale.

Notice: An explicit notice of exceptions, warnings, deprecation, or how
to use the code.

Under Development: This encompasses development notes, notice of
incomplete code parts or TODO-notes. It could also be com-
mented code, coding guidelines or recommendations for extend-
ing the code.

Style & IDE: IDE or compiler directives or a comment that visually
partitions code or comments into logical sections.

Metadata: Metadata could be licensing information, ownership infor-
mation, or pointers to other resources.

Discarded: A higher-level category for comments that are not fur-
ther analyzed: auto generated comments, unidentifiable (noise)
comments, comments in a foreign language.

The six higher-level categories are divided into 20 lower-level cate-
gories: e.g., the higher-level category Purpose consists of the lower-level
categories Summary, Expand, Rationale. The complete breakdown of
higher-level categories into categories can be seen in Table 5.

The CCTM is based on classifying comments from a diverse set of
textual languages, which is why we assume some generalizability to
comments from other languages, such as MATLAB and Simulink. Also,
the CCTM offers a broad spectrum with 20 categories, which makes it
currently the most fine-grained taxonomy (Kostić et al., 2022). Still, it is
unknown whether the taxonomy can be directly transferred to Simulink
or non-class comments in MATLAB. In this work, we use the CCTM as a
first step to classify Simulink and MATLAB comments and complement
it with missing categories to build our taxonomy SCoT, which is also
5

applicable to non-class comments and visual languages like Simulink.
3. Methodology

3.1. Research questions

The goals of this study are to explore the landscape of comments
in Simulink projects, to understand how comments are used and what
information they embody, and to establish a mapping of commenting
practice in Simulink projects and textual programming languages. With
this in mind, we design our research questions (RQs), and explain
them in this section. Our focus is on Simulink models, as MATLAB is a
textual language featuring comments that are similar to other textual
programming languages. To put our findings for Simulink in context of
those more well-understood languages, we also analyze MATLAB code
from the bilingual projects of our dataset, similarly to Simulink, except
for RQ 2.

Q 1: How are Simulink projects documented?

There exist various types of comments in model-based development
environments, such as Simulink (see Section 2.2). Not all types of
comments are expected to be used in the same frequency. We give a
breakdown of the usage frequency of Simulink’s comment types. As
Simulink models can consist of various subsystems (or layers of sub-
systems), the comments can also be present in various layers of these
systems. However, whether certain layers tend to be more commented
than others and with which comment types is unknown. We analyze
this information at all levels of depth. During our work, we found
many comments to be have identical comment texts (type I comment
clones Blasi et al., 2021), in some cases hundreds of times. We refer
to such comments as duplicates and investigate possible duplication
sources of heavily duplicated comments further. Finally, we investigate,
whether developers follow the guidelines we collected in Section 2.4.

With RQ 1, we aim to answer, which comment types are typically
present in models, learn their basic characteristics and where they are
used.

Q 2: Does the amount of documentation vary in different models?

Prior research searched for correlations between the amount of com-
ments and other project characteristics in textual languages: e.g., cor-
relations exist between the number of comments and number of issues
in the code (Misra et al., 2020), but no correlation between number of
comments and number of project authors has been found (He, 2019).
However, to the best of our knowledge, it is currently unknown whether
a model’s age, size, and complexity and amount of comments show a
correlation. With this knowledge, we can better gauge the importance
of comments in big, mature, and complex models. Also, with such
correlations established, comment smells (Jerzyk and Madeyski, 2023)
could be derived: developers should potentially revise the comments
of strong outliers, e.g., if a model grew very large but is still hardly
commented.

Q 3: How can the content of Simulink comments be classified?

As comments can cover many topics, e.g., summary, usage tips, licens-
ing information etc. we aim to understand, what they are employed
for in Simulink and MATLAB. To this end, we classify Simulink and
MATLAB comments, using the CCTM taxonomy by Rani et al. (2021d)
from Section 2.5. We analyze the commenting practices in terms of
what information is embedded inside different comments, such as
Summary, Warning, Copyright notice, etc. Please note, the CCTM is a
Class Comment Type Model. While our MATLAB samples feature a few
class comments, most are in fact inline comments. Simulink, does not
even feature classes, but offers various comment types (see Section 2.2).
Thus, MATLAB and Simulink comment information may fall outside the
current CCTM taxonomy.

Based on this step, we propose an extended taxonomy SCoT for
MATLAB and Simulink that encompasses comments from textual and

visual languages.

The Journal of Systems & Software 215 (2024) 112087A. Boll et al.

R

p
t
e
s
S
1
a

o
o
u
s
p
(

𝑛
m
s
e

.
R

3

s
r
t
c
s
r
c
o
t
t
c
i
b
c
I
t
a

Q 4: How does Simulink documentation compare to textual programming
languages?

While the first three RQs focus on Simulink projects and exclusively on
their languages Simulink and MATLAB, we also want to put these find-
ings into context of previously studied languages. Simulink comments,
with their various comment possibilities in a visual programming lan-
guage, may differ significantly from textual programming languages.
Depending on the results of our comparison, Simulink and MATLAB
may have to be treated separately in documentation research or could
be treated similarly to textual languages in some contexts.

3.2. Study subjects and data collection

3.2.1. Data set and sample
To collect Simulink model comments and MATLAB comments, we

use the SLNET set by Shrestha et al. (2022). Their set contains
2833 Simulink projects, consisting of 9095 Simulink models (we could
analyze 9033 models successfully, i.e., our analysis scripts ran error-
free) and 17,792 MATLAB source code files. Shrestha et al. curated
open source Simulink projects from GitHub and MATLAB Central.7 The
rojects thus represent a highly diverse data set, comprising a range of
iny toy projects up to industry-like projects from various domains (Boll
t al., 2021). The SLNET set has been used in prior work for replication
tudies or learning about Simulink bus usage (Amorim et al., 2023;
hrestha et al., 2023b). We use the complete SLNET set to answer RQ
and RQ 2, and have not excluded any comments, as we want to give
holistic overview of comments.

To answer RQ 3, we manually analyze a uniformly sampled subset
f SLNET comments, as no automatic classifier exists for MATLAB
r Simulink, yet. We thus choose the same sampling strategy as was
sed to create the CCTM taxonomy (see Section 2.5). We compute our
ample size 𝑛, required to estimate population proportions of finite
opulations, according to the standard Eq. (1) given by Triola et al.
2006):

=
𝑧2𝑝(1−𝑝)

𝑒2

1 + 𝑧2𝑝(1−𝑝)
𝑒2𝑁

(1)

We choose our confidence level of 95% and thus the error 𝑒 = 0.05,
and 𝑧 = 1.96. The value of 𝑝 defaults to 0.5. We give a breakdown
of sampled comments for each type of comment in the last column of
Table 1. To get a better overview of the full breadth of comments, we
deduplicate the SLNET comment set, before we sampled from it. After
deduplication every comment has a unique comment text. This ensures
that our results are not dominated by comments that are automatically
generated, imported from libraries, or copy-pasted numerous times. We
then use our manual analysis results of RQ 3 to answer RQ 4.

3.2.2. Extraction of simulink comments
We analyze each model of the SLNET set element by element

to check for the presence of comments (c.f . Section 2.2). For each
comment, we note relevant metadata, the main ones being the type
of the comment (Element Description, DocBlock, etc.), the comment
text and its length in chars, and the nesting depth in the subsystem
hierarchy.

In this first step, we found only 11 instances of Simulink Notes.
As there are so few of them, we investigated them manually: five of
them were automatically generated, the Simulink IDE was unable to
load another five, and the last one was just a test Note. Because of this,
we did not sample Simulink Notes for the manual analysis of RQ 3.

In the SLNET set, we found many duplicated comments (i.e., com-
ments with identical text). Based on Blasi et al. (2021) and our observa-
tions, we suspect duplications coming from (i) a duplication process like

7 https://www.mathworks.com/MATLABcentral
6

copy-paste/cloning (individual comments, file duplications, or project
forking), (ii) generic comments being located in multiple locations of a
model (e.g., copyright notice) or very short comments likely to appear
more than once, due to the limited information they hold, (iii) library
imports, (iv) generation by the IDE, and (v) synthetic generation. To
not skew our results by heavily duplicated comments, we sample from
a subset of deduplicated comments, only.

We further found that some comments stem from Mathworks’ li-
braries or toolboxes. As they are part of the models – many toolboxes
are open source projects in the SLNET set themselves – we do not
exclude them from our sample. Due to the deduplication step de-
scribed previously, such library comments are not overrepresented
in our sample. Our sample set for manual analysis incorporates 374
Simulink comments. Table 1 gives an overview of the number of
different comments, the cardinality of comment texts, and how many
we sampled.

3.2.3. Extraction of MATLAB comments
In the 2833 projects of SLNET, there are 17,792 MATLAB source

code files. In 14,642 of them, we found at least one source code com-
ment. For the manual analysis, we sample from the deduplicated subset,
which results in 383 MATLAB comments. Table 1 gives an overview of
the number of MATLAB comments, the cardinality of comments, and
how many we sampled.

3.2.4. Computational analysis
We extracted the Simulink comments and their metadata (see Sec-

tion 3.2.2) directly from the models themselves with a MATLAB script.
For this, we iterated over the whole model set, and within each model.
We first collected a potential Model Description, all Annotations, and
DocBlocks. Furthermore, we iterated over every model element and
inspected it for a possible Element Description. We kept track of each
comment and its metadata for further analysis steps.

We gathered the MATLAB comments using a Python script. We
fused successive lines only containing comments to a single comment,
even when the developers do not use the ‘official’ multi-line method
of bracketing the comment between %{ and %}. We did this, as the

ulti-line feature is not often used and developers tend to fall back to
tarting each line of their multi-line comment with a simple % symbol,
ven for very long comments.

All Simulink and MATLAB comments we found are gathered in
json-files, which we then analyzed further with Python scripts for
Q 1, RQ 2 and RQ 4.

.2.5. Manual classification process
To answer RQ 3, we first gathered the sampled comments into a

hared Google sheet8 for a collaborative classification process. Three
esearchers (a postdoctoral researcher and two Ph.D. candidates) par-
icipated in the classification process. We used the same three-step
lassification process as was employed by Rani et al. (2021d): we
plit up the samples in a way that each comment is classified by one
esearcher in the first step. Next, another researcher reviewed the first
lassification and possibly proposed changes to the classification. The
riginal researcher then accepted or rejected the proposed changes of
he reviewer. If changes were rejected (if both evaluators disagree), a
hird researcher reviewed the comment and gave a final verdict on the
lassification. During classifying and reviewing, we kept track of miss-
ng classification categories, to expand or refine the CCTM taxonomy,
y new categories, we observed. For example, Simulink contains some
omments that have interactive features, for which we created a new
nteractive category. For that purpose, all three researchers discussed
heir disagreements in the classification/reviewing process, as they are
n indicator of the potential taxonomy refinement or extension. We also

8 https://www.google.com/sheets

https://www.mathworks.com/MATLABcentral
https://www.google.com/sheets

The Journal of Systems & Software 215 (2024) 112087A. Boll et al.

R

d
d
d
o
a

C

i
F
m

o
M
t
c
𝑥
t

w

o
w

l

I

W
c
a
c
a
d

Table 1
The absolute number of each comment type found in the SLNET set for Simulink models
and MATLAB source code files, is shown in the comments column. The deduplicated
numbers are given in the middle column. The number of sampled comments for our
manual analysis is given in the last column.

Comment Type 𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠 |𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠| 𝑠𝑎𝑚𝑝𝑙𝑒𝑑

Simu-
link

Model Description 2,088 521 16
⎫

⎪

⎪

⎬

⎪

⎪

⎭

374
Element Description 5,303 287 3
Annotation 91,027 11,348 348
DocBlock 308 129 7
Note 11 6 0

MAT-
LAB

Class Comment 472 354 3
}

383Other Comment 159,957 75,589 380

noted, how many comments needed a second or third review, to gauge
our inter-rating conformity. This process yielded our taxonomy SCoT,
in the same way as the taxonomy CCTM (see Section 2.5) was built.

In answering RQ 4, we use our findings of RQ 3 and compare the
similarity of Simulink and MATLAB commenting practice with findings
of studies that used the CCTM to classify Java, Python, and Smalltalk
by Rani et al. (2021d).

4. Results

In this section, we describe the results of our study structured by
research question; the discussion follows in the next section.

Q 1: How are Simulink projects documented?

General measurement and properties
We counted the total number of each comment type in Simulink

models and MATLAB source code files, and depict the results in the
second column of Table 1. As can be seen, Annotations make up the
overwhelming majority of Simulink comments, with over 90k instances
in our 9033 Simulink models. All other comment types combined only
add up to about 7.7k instances.

Almost all MATLAB comments are non-class comments. In the 552
MATLAB classes of our source code files, we found 472 of the classes
to have a class comment, though.

As can be seen when comparing the absolute (𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠) and car-
inality (|𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠|) columns of Table 1, many comment texts are
uplicated in our set (e.g., around 88% of the Annotation texts are
uplicates). From the class comments in our set, on the other hand,
nly 25% are duplicates, while over half of the non-class comments
re.

omment duplication and duplication reasons
To get a better understanding of comment duplicates (or clones)

n Simulink and MATLAB, we present a scatter plot of duplicates in
ig. 3. In the graph, the left-most comments are unique, while the right-
ost are heavily duplicated. The 𝑥, 𝑦-position of a marker represents

that there are 𝑦 different comments which are duplicated 𝑥 times in
ur dataset. For example, more than 50k non-class comments from
ATLAB are unique (dark blue marker at 𝑥 = 1, 𝑦 = 54,287), while

he next marker at 𝑥 = 2, 𝑦 = 11,598 indicates that more than 10k
omments of that type are duplicated exactly once; the last marker at
= 1524, 𝑦 = 1 represents one comment which was duplicated 1523

imes.
As can be seen in Fig. 3, there are many duplicates (all comments

ith 𝑥 > 1), with some comments duplicated dozens or in a few extreme
cases more than a thousand times, such as Simulink Annotations or
MATLAB’s non-class comments. Such heavily duplicated comments are
overall rare on the other hand, i.e., the higher the duplication count
f a comment, the lower the chance that there is another comment
ith a similarly high duplication count. This can also be seen at
7

Table 2
Overview of the ten most duplicated comments’ duplication reason per comment type.
The last column shows the ratio of top ten duplicates and the total number of comments
of that type.

Comment
Type

Generic/
copy-paste Library IDE synthetic top10

all

Model descr. 10 0 0 0 0.42
Element descr. 4 6 0 0 0.59
Docblock 7 3 0 0 0.53
Annotation 0 10 0 0 0.18

Class comment 9 0 1 0 0.17
Other comment 4 0 0 6 0.05

total 34 19 1 6 0.11

the sparsity of markers of most types for higher duplication counts.
In fact, every comment type, except Element Descriptions, has more
unique comments than those that have at least one duplicate. In other
words: the first marker’s 𝑦 value of a type is higher than all the others
combined.

To understand the duplication phenomenon better, we sampled the
ten most duplicated comments of each category in Table 3 (represented
by the right-most markers of each type in Fig. 3). One can immediately
see that some comments that occur most often are also highly similar,
e.g., the copyright notices in Model Descriptions: 1773 of our 2088
Model Descriptions are a MathWorks copyright notice.

For all comments of Table 3, we identified the duplication origins,
i.e., why the comment’s text appears more than once. Based on our
manual analysis, we hypothesized five types of duplication origins
(based on (Blasi et al., 2021) and our observations):

generic: a comment’s text is very short or non-specific, making it likely
that it appears more than once, e.g., all Element Descriptions
listed in Table 3,

copy-paste: the comment or the comment text was copy-pasted within
the model or from model to model, e.g., the most copied DocBl-
ock of Table 3,

ibrary: the comment is part of a library (only possible for Element
Descriptions, DocBlocks, Annotations), e.g., all Annotations of
Table 3,

DE generated: the comment or comment’s text was generated via the
IDE (i.e., the IDE starts stubs for the user to fill in, or gives
generic info), e.g., ‘‘UNTITLED Summary of this class goes here
\nDetailed explanation goes here’’,

synthetically generated: we found a number of comments in MATLAB
code that were synthetically generated. In fact, in all instances
of synthetically generated comments we observed, the complete
code files were synthesized, e.g., ‘‘rad’’ and ‘‘Translation Method
- Cartesian’’.

e often could not confidently categorize whether a comment was
opy-pasted or just generic as we only observe the final identical texts
nd not the duplication process, and thus conservatively united the
ategories in Table 2. Only a few of the heavily duplicated comments
re generated by the IDE or synthetically. Overall, one can see a
ivergence in the categories generic/copy-paste, library, and synthetically
generated for the different types. The last column of Table 2 shows
that taking only the top ten most duplicated comments, e.g., Element
Descriptions, represents already a high percentage of all comments of

its type. This fact gives another perspective to interpret Fig. 3.

The Journal of Systems & Software 215 (2024) 112087A. Boll et al.

𝑥

Fig. 3. Scatter plot of duplication counts and the number of their occurrences. Note: both the 𝑥–axis and 𝑦-axis are logarithmic.
R

Comments at different levels of the subsystem hierarchy
We give a breakdown of the commenting practices at different levels

of depth of the subsystem hierarchy in Table 4. We define Model
Descriptions to occur at the hypothetical depth 0 to include them in the
table. One can see that most Element Descriptions are located at depth
4 and Annotations peak at level 3. DocBlocks are the only comment
type with two local maxima at level 1 and level 7, respectively. In
absolute terms, most comments occur at depth 3, while deduplicated,
most comments lie at the root level (depth 1).

While the ratio of comments per subsystem is highest at the root
level, the Model Descriptions at depth 0 lead to the highest ratio of
comments per element. The ratio of comments per subsystems drops
from depths 1 to 4, stabilizing afterward.

Comparing the columns of 𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠 and |𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠| shows that the
highest ratio of original comments can be found in the upper levels,
with 75% of Model Descriptions and less than 50% of the comments
at the root level being duplicates. At the other extreme are depths 10
or more, with > 98% duplicated comments, which is why we cut them
from Table 4.

To not skew our analysis of comment lengths, we used only the
deduplicated comments to compute the mean and median lengths in
the last two columns. At all depth levels, the mean length (denoted by
̄ 𝑙𝑒𝑛 in Table 4) of a comment is longer than its median (denoted by
𝑀𝑙𝑒𝑛), indicating a positive-skew (right-tailed distribution) of comment
lengths. The mean length of Model Descriptions (depth 0) is much
longer than any other comment. Similarly, the root level’s mean com-
ment length is about twice as long as on deeper levels of the subsystem
hierarchy. Median lengths do not show a clear trend, with only the
Model Description, again, being much longer than the rest.

As Annotations can both be containing text of various lengths,
but can also be highlighting areas without text, we analyzed how
Annotations are primarily used. We found that very few (0.2%) of
the Annotations are highlighting an area only, i.e., not holding a
single comment text character. If used, such area-only Annotations
are often highlighting a group of blocks (and not only empty model
canvas). Overall, there are also few (8.1%) Annotations, containing
one or multiple blocks, showing that most often Annotations are used
as a purely textual companion, next to other model elements. Those
Annotations that contained blocks usually hold a comment that is 10
to 100 characters long.

Comment guidelines
We investigated, whether developers followed the guidelines we

gathered in Section 2.4. We skipped those guidelines that are not ob-
jectively measurable: guidelines concerning comment appearance and
formatting, subjective guidelines about ‘‘meaningfulness’’ of comments;
8

or guidelines regarding generated code, unobservable for us.
himl_0001 (standard header comment) No source code file of our
data set features the standard header of G1.

himl_0003 (comment density: 0.2 comment lines per line of code)
We observed a higher mean of 0.271 comment lines per line of
code, and a median of 0.25.

jc_0603 (model description) We found only 2088 of 9033 models
having a Model Description, while many of them are generic or
copy-pasted duplicates, see Tables 1 and 2.

RQ 1: How are Simulink projects documented?

Annotations are the most used Simulink comment feature, while
Notes are barely used. In MATLAB, there are few class comments.
All types of comment show high numbers of duplicates, but each
comment type (except Element Descriptions) has more unique
comments than comments with at least one duplicate. Simulink
models have the highest comment density at model and root level
of the subsystem hierarchy for all comment types; the longest, least
duplicated comments are also there. At lower depths, comments
are often duplicated, but the density or comment length does not
drop off. Few comment guidelines exist for Simulink or MATLAB;
most not objectively measurable. MATLAB is commented more than
guidelines demand, few models come with a model description, and
the standard header is not featured in MATLAB code.

Q 2: Does the amount of documentation vary in different models?

Here, we compute the correlation matrix of model size, cyclomatic
complexity (Schroeder et al., 2016), and age as well as amount of
model comments. We break down model size into overall number of
model elements (blocks, signal lines) and number of subsystems, and
use a model’s age as a proxy for its time under development. We also
break down ‘the amount of comments’ into number of comments, the
total comment length in chars of a model, and the mean and median
comment lengths of a model.

The correlation matrix of these metrics is given in Fig. 4. As none of
our metrics are normally distributed, we employ Spearman’s rank cor-
relation coefficient. We only consider higher correlations between two
metrics, and ignore weak correlations 𝜌 < 0.3 or too low significance
levels of 𝑝 < 0.05 (note: 𝑝 ≠ 𝜌).

Most correlations are significant: strong correlations are shown in
color, weak correlations in gray. A few correlations are insignificant,

The Journal of Systems & Software 215 (2024) 112087A. Boll et al.
Table 3
The most duplicated comments in our data set listed by type. We marked shortened comments by [...], and new lines by \n.

Comment Number of Comment Text
type occurrences

Model Description

247 Copyright 2017–2018 The MathWorks, Inc.
117 Copyright 2014–2018 The MathWorks, Inc.
95 Thomas Modules
77 Copyright 2015–2018 The MathWorks, Inc.
75 Copyright 2014–2017 The MathWorks, Inc.
73 \nCopyright 2014–2016 The MathWorks, Inc.
68 \nCopyright 2009–2018 The MathWorks, Inc. MathWorks, Inc.
45 \nCopyright 2015–2017 The MathWorks, Inc.
42 \nCopyright 2014 The MathWorks, Inc.
39 \nCopyright 2013 The MathWorks, Inc.

Element Description

748 Initialize
436 Output Signal
342 Input Signal
321 \nStore in Global RAM
259 Add in CPU
222 source block
200 Trigger
197 Fader Output
196 Lower Limit
196 Upper Limit

DocBlock

51 This subsystem computes the surge, sway, heave, roll, pitch and yaw motions of the center of the body [...]
51 This subsystem computes the elevation of the sea wave, where the sea wave spectrum is given by [...]
17 These are the Wave Excitation Forces computed by WAMIT-Demo version \nthe angle is between [...]
11 jza - 21.08.07 The test model is created manually. \n\nTransformation rules for test data variants [...]
8 Integral de sinal seno = sinal -coseno
7 **Steps to Create a Quartus VHDL project****Simulink Steps**1. Setup all the paths
6 Some text about the spec. . . \n
5 Derivation of State Space model from original equations
4 By testing SyD, you will be able to discover its advanced features and advantages
2 Synchronous machine\r\n>>> Power conserving transformation

Annotation

3840 The Measurement is not modified
1837 Pierre Giroux, Gilbert Sybille\nPower System Simulation Laboratory\nIREQ, Hydro-Quebc
1725 1) Only subsystems can be added as variant choices at this level\n2) Blocks cannot be connected at this [...]
1539 =
1464 Graphical user interface for the analysis of\nSimscape Power Systems \nPlace the Powergui block in the [...]
1434 *
1196 U(k)
1090 [d\n q]
1090 [al\n be]
954 Integrator

Class Comment

15 Author: Colin Eles elesc@mcmaster.ca \n Organization: McMaster Centre for Software [...]
12 Copyright 2014 The MathWorks, Inc.
8 Author: Matthew Dawson matthew@mjdsystems.ca\n Organization: McMaster Centre for [...]
8 Copyright (c) 2016, The MathWorks, Inc.
8 %%% [...]
7 Copyright 2014–2016 The MathWorks, Inc.
7 CONNECTIVITYCONFIG PIL connectivity configuration class\n\n Copyright 2018 Arm Holdings
6 %%% [...]
6 UNTITLED Summary of this class goes here \nDetailed explanation goes here
5 Copyright 2017 The MathWorks, Inc.

non-Class Comment

1524 \n
1368 rad
1359 Translation Method - Cartesian\nRotation Method - Arbitrary Axis
1130 in
954 m
594 Las unidades de la resistencia son ‘‘Ohmios’’.
531 User supplies all inputs
431 kg*mˆ2
398 Inertia Type - Custom\nVisual Properties - Simple
398 %
shown in white. Only a single negative, albeit somewhat weak, cor-
relation is present between the number of comments and the median
comments’ length of a model. There are only two comment metrics
showing correlations to the model size, complexity, or age metrics:
number of comments and total number of comment chars of a model.
Lastly, time under development is uncorrelated to any other metric we
measured.

Spearman’s correlation only measures correlations of ranks and
not of actual values. This is why we also give an overview of the
distributions of the metrics of maturity and comment elaborateness,
9

which show a strong positive correlation in Fig. 5. This shows, whether
the values also grow somewhat similarly. For each of the metrics, we
give the mean value of each quintile of their distribution. For example,
if one sorts the models by the number of elements (the left-most five
bars), the quintile of smallest models only has 11 elements in the mean,
while the second quintile’s models are bigger with 38 elements, etc. One
can see that all metrics from our selection are strongly positive-skewed,
as they grow from quintile to quintile even with our logarithmic 𝑦-axis.
The last quintile features a ‘‘growth spurt’’ for all metrics. This ‘‘growth
spurt’’ is especially drastic for the number of elements, subsystems, and

The Journal of Systems & Software 215 (2024) 112087A. Boll et al.

R

Table 4
Occurrences of Simulink comments (except Notes) at different subsystem depths.
1 Mean and median lengths in chars of the row-wise deduplicated |𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠|. 2 Each model is counted as one subsystem and element at depth 0 for Model Descriptions. 3 The
only subsystem at depth 1 is the root subsystem.

𝑑𝑒𝑝𝑡ℎ
Model

Descriptions
Element

Descriptions Annotations DocBlocks 𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠
𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚

𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠
𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

|𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠| �̄�1𝑙𝑒𝑛 𝑀1
𝑙𝑒𝑛

0 2,088 0 0 0 2,088 0.232 0.2312 521 174.91 71
1 0 622 10,965 132 11,719 1.303 0.016 6,202 98.98 32.0
2 0 875 13,425 24 14,324 0.32 0.007 3,162 57.41 17.0
3 0 1,333 16,260 25 17,618 0.24 0.007 2,091 54.30 22
4 0 1,925 12,750 8 14,683 0.17 0.005 1,257 52.55 22
5 0 431 13,404 0 13,835 0.18 0.006 869 55.49 23
6 0 90 10,436 17 10,543 0.21 0.006 536 58.41 24.0
7 0 20 6,909 68 6,997 0.22 0.006 263 60.48 30
8 0 6 3,220 34 3,260 0.10 0.003 81 71.01 41
9 0 1 2,317 0 2,318 0.17 0.007 58 48.40 38.0

total 2,088 5,303 91,027 308 98,726 0.23 0.007 12,255 85.84 30
Fig. 4. Heatmap of rank correlations of maturity metrics and comment amount metrics.
Weak correlations with |𝜌| < 0.3 are depicted in gray, and insignificant correlations with
𝑝 < 0.05 are shown in white.

comments. While none of the metrics is a complete outlier in terms of
growth, one can see that the complexity does not grow as fast as the
other metrics. Similarly, one can see that the total comment length does
not keep up with the growth in the upper quintiles. Finally, this chart
shows that most models only have a handful of comments, overall.

RQ 2: Does the amount of documentation vary in different models?

The number of total comments and total comment length of a
model grows as the model grows in size (number of elements/-
subsystems) and complexity. Other correlations are either weak
or insignificant. In particular, time under development does not
correlate to any other metric we measured.

Q 3: How can the content of Simulink comments be classified?

Deriving SCoT from CCTM
While working on RQ 3, we started by adapting the CCTM’s terms

slightly to fit our context. This means that we changed terms like
‘‘source code’’ to ‘‘model’’ for Simulink, and adjusted terms of the
CCTM only referring to ‘‘classes’’. We also decided on clear boundaries
to differentiate between the categories Summary and Expand. In the
CCTM, a Summary is a brief description of functionality and purpose,
covering the question word ‘what’. The Expand category is used to
provide more details on the code to answer the question word ‘how’.
In practice, we found it hard to differentiate these categories and thus
10
Fig. 5. Mean quintile values of metrics that showed correlation.

decided on a more objective criterion. To this end, we defined the
category Summary to be a title of a module or summarizing at least 10
model elements or source code lines, while being at most 3 sentences
long. We used the Expand category for the remaining candidates that
were longer or described fewer elements/lines.

A few of our classified comments in Simulink and MATLAB did not
fit in any prior CCTM category. To classify these comments accurately,
we introduced five new categories (shown in italics in Table 5):

IDE Hint: (higher-level category notice) an instruction of how (not) to
use the IDE to achieve certain results.

System Requirements: (notice) description/list of hardware or soft-
ware requirements that make it possible to use the artifact and
all its features.

Version History: (metadata) a description of older versions, version
names, and dates of changes. This category is partly covered in
the Deprecation category in the CCTM.

Interactive: (media) a comment which helps developers to interact
with the program or IDE, such as interactive buttons in a com-
ment that start or stop the simulation of a Simulink model.

The Journal of Systems & Software 215 (2024) 112087A. Boll et al.

f

S

M
l

a
c
p
c
(

F
N
e

R

p
o
e
l

F
w
t
d
s

Picture: (media) a picture, illustration, or figure for documentation
purposes, such as a screenshot or example output.

Note that we created a new higher-level category Media, which is
easily extendable for different kinds of media; other languages may use
for documentation, e.g., audio, video, etc.

While classifying, we came upon calls to action like ‘‘in case of bugs,
please contact us at adress@mail.host’’. We expanded the Ownership
category to cover such contact requests instead of creating a new
category.

In the classification process, we decided to discard non-English text,
as we could not ensure our complete understanding in categorizing
such comments. We found text in Japanese, German, Dutch, and Span-
ish showing the diversity of the Simulink and MATLAB communities.
As can be seen in Fig. 6, the Discarded category was one of the smallest
or both languages.

imulink and MATLAB comment information
The detailed results of our manual classification of Simulink and

ATLAB comments are listed in Table 5. It can be seen that the lower-
evel categories Summary and Expand (from Purpose) are most often

utilized, with the categories Usage and Ownership still being used for
more than a tenth of comments. Overall, 22 categories are covered by
our samples (19 by Simulink, 16 by MATLAB). We do not show the
CCTM categories Deprecation, Incomplete and Directive in Table 5, as we
found no instances of them in any of our samples.

From the 374 Simulink comments we analyzed, 59 covered more
than one category. Many of such multi-topic comments were visually
split into different parts by line breaks, where one part covered, e.g.,
License Information, followed by a Summary. Overall, we used 458

ategory classifications for our 374 Simulink comments (1.22 categories
er comment). In MATLAB’s 383 comments, on the other hand, 108
omments covered more than one category, totaling 630 categories
1.64 categories per comment).

An aggregation into higher-level categories of Table 5 is shown in
ig. 6. While Purpose dominates across both Simulink and MATLAB,
otice, and Style/IDE still cover more than every seventh comment in
ach language.

RQ 3: How can the content of Simulink comments be classified?

The CCTM taxonomy is mostly applicable to Simulink and MAT-
LAB. We added the categories IDE Hint, System Requirement, Version
History, Interactive, and Picture, while the categories Incomplete Com-
ment, Directive, and Deprecation were not applicable. This yields our
taxonomy SCoT. Simulink and MATLAB both cover nearly the full
breadth of the CCTM taxonomy. Comments from the Summary, Ex-
pand, Usage, and Ownership categories dominate in both languages.
Simulink comments are more narrowly focused per comment, as, on
average, each comment cover only 1.2 categories, while a MATLAB
comment covers 1.6 categories.

Q 4: How does Simulink documentation compare to textual programming
languages?

This question is partly answered by our answer to RQ 3: we em-
loyed the CCTM taxonomy, with only slightly adjusting descriptions
f the categories and adding five seldom-used categories to the pre-
xisting category set. This shows that comments in textual and visual
anguages mostly cover the same categories.

A comparison over the distributions of classifications is shown in
ig. 7. To make a comparison between the different languages possible,
e use the category mapping found in Fig. 8 of Rani et al. (2021d). The

op rows of Fig. 7 are very similar to a heatmap version of Table 5. The
ifference is that we use another category set in Fig. 7: (1) we do not
how our new categories as these were not part of the CCTM and could
11
Table 5
Detailed overview of the manual classification of our sample set: 374 Simulink and 383
MATLAB comments. The columns add up to more than 374 or 383, because a single
comment can cover multiple categories. New categories of our taxonomy are printed
in italics and unused categories of the CCTM are not shown.

Higher-level category Category Simulink MATLAB

Purpose
Summary 118 108
Expand 131 235
Rationale 11 17

Notice

Usage 93 56
Exception 2 0
𝐼𝐷𝐸 ℎ𝑖𝑛𝑡 2 0
𝑆𝑦𝑠𝑡𝑒𝑚 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 0 5

Under Development

Development notes 11 17
Todo 0 2
Commented code 1 35
Coding guidelines 1 0
Extension 1 0
Recommendation 1 2

Style & IDE Formatter 6 30

Metadata

License 0 9
Ownership 35 49
𝑉 𝑒𝑟𝑠𝑖𝑜𝑛 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 6 19
Pointer 16 25

Discarded Auto generated 1 2
Noise 15 19

𝑀𝑒𝑑𝑖𝑎
𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑣𝑒 6 0
𝑃 𝑖𝑐𝑡𝑢𝑟𝑒 1 0

Fig. 6. Higher-level category distributions of our sampled comments of Simulink and
MATLAB. Note that the percentages sum up to more than 100%, because a single
comment can cover multiple categories.

not have been found in Python, Java, or Smalltalk by definition, (2) we
include categories that were used for Python, Java, or Smalltalk, which
we did not find in our samples from MATLAB or Simulink. Overall, one
can see a similar distribution between the languages, e.g., the categories
Summary, Expand, and Usage are heavily used in all languages. From the
languages studied in this work, we found that they lack in Exception
comments, compared to the other languages. MATLAB features more
Commented Code and Formatter, than all other languages.

http://www.adress@mail.host

The Journal of Systems & Software 215 (2024) 112087A. Boll et al.

R

Fig. 7. Heatmap comparing our CCTM categorization (highlighted in bold) and
previously categorized languages. The categories of the CCTM are listed horizontally,
while the color scheme depicts how many percent of comments fall into a category.

In RQ 3, we reported that, on average, a Simulink comment covers
1.21 categories, while MATLAB comments cover 1.64 categories. These
results compare to the previously studied languages as follows: Python
2.23, Java 2.47, and Smalltalk 2.91 (derived from data of Rani et al.,
2021d).

RQ 4: How does Simulink documentation compare to textual program-
ming languages?

Simulink and MATLAB comments cover mostly the same breadth
of categories as Python, Java, and Smalltalk comments. In addi-
tion, each lower-level category was chosen similarly often for each
language.

5. Discussion

In this section, we discuss our main findings, new insights, and
possible implications, structured by research question.

Q 1: How are Simulink projects documented?

General measurement and properties

We found that Annotations are the most common comment type in
Simulink by far. This could be due to Annotations being the only type
of comment showing the content directly in the model window. While
adding a new Annotation, developers do not have to switch to another
window and can use Annotations for several purposes (c.f . Section 2.2)
directly in the Simulink IDE. Readers of Annotations are also directly
aware of the presence of Annotations and are able to read their content
without opening a new window, as they would have to do with the
other comment types. This impediment may explain the relative lack of
instances of DocBlocks, Element Descriptions, and Notes. An additional
reason for Notes is that they are the newest commenting feature in
Simulink, only present since 2018, with the SLNet dataset (Shrestha
et al., 2022) being gathered in 2020.

With 1773 of 2088 Model Descriptions featuring a MathWorks
copyright notice in our data set of 9033 models, we find the Model
Description feature mostly unused, outside of MathWorks models.

In our view, some comment types in Simulink show usability short-
comings: comment types whose presence is not indicated to users
immediately (Model Description, Element Description, Notes), or their
content not directly accessible (DocBlocks) are hard to handle, or it
is cumbersome to discover their existence. For example, users have to
perform two clicks to see whether an element has a description, or not.
We doubt that users would try to find out one by one which elements of
12
a model contain an Element Description. A Model Description requires
four mouse clicks to access, but there is only one Model Description
per model, giving it a central place. DocBlocks are shown in the model,
and users will thus see that some form of comment is present, but the
content is opaque until accessed by a double click and waiting for, e.g.,
Microsoft Word to open. Users may also need to install an .rtf-editor
to access the content.

In view of all this, we suggest improving the accessibility of Element
Descriptions by adding a small symbol on documented elements, or on
a mouse-over to highlight the element or display the comment text.
This ensures that developers become aware of an Element Description.
DocBlocks similarly could display their (unformatted) comment on a
mouse over, without opening an external editor window.

An alternative approach could be to refrain from using any other
type of commenting feature apart from Annotations and Model De-
scriptions. This makes comments directly accessible in the case of
Annotations, and gives a central documentation location to find and
automatically process vital model metadata in the case of Model De-
scriptions. Limiting the set of comment types could also help developers
in their choice of which of the five comment types to use to document
a particular aspect of their model.

While conducting this study, we asked Mathworks developers
whether they view any of the commenting features as obsolete or to be
preferred, in private communication. A Mathworks engineer disclosed
to us that Mathworks views none of the comment types as obsolete,
per se. The Mathworks engineer added that DocBlocks can viably be
replaced by a Model Description, Annotation, or a Note, though.

We found class comments in 86% of MATLAB classes. This stands in
contrast with previous findings (Rani et al., 2021d): 68% in Java, 23%
in Python, and 38% in Smalltalk. As the class feature is seldom used
in MATLAB (only 552 classes in 17,792 MATLAB source code files), it
is an atypical phenomenon. This could explain the outlying percentage
level. Note that we have checked that the MATLAB IDE does not create
class comments automatically.

Comment duplication and duplication reasons

Many comments in our study set are heavily duplicated, but differ-
ent comment types are duplicated in different ways. For instance, we
only found MATLAB comments to be synthetically or IDE generated.
Some duplication actually is unavoidable, even with good commenting
practice: Element Descriptions refer only to a single, often simple model
element and, therefore, are expected to be more simple and similar
to each other than more complex structures such as comments for
subsystems or complete models. Following up on this, the high amount
of generic/copy-pasted Model Descriptions seems to be haziness by
developers: we found many simple copyright statements without any
information concerning the specific model itself. We suggest that devel-
opers should follow guideline jc_0603 (see Section 2.4), and be even
more specific about the information of the model description: give at
least a title and short purpose description of the model in addition to
author and copyright information to each model.

Comments at different levels of the subsystem hierarchy

We found that the most elaborate, least duplicated comments occur
at the root level of models. This is also the place with the highest
comment density. Comment length does not change from the second
layer downwards — only the frequency of comments at depths two
and three is slightly higher than at lower depths. All this suggests
that developers put more effort into documenting the top level(s).
This might be because the root level and Model Description offer the
possibility to document the complete model at once at a central place,
which is easy to find. In contrast to this, lower-level comments may
focus only on the direct context, i.e., not the surrounding subsystems of
higher or lower levels, and thus are shorter. Similarly to our findings,

The Journal of Systems & Software 215 (2024) 112087A. Boll et al.

R

R

i
t
c
u
i
h
I
t
h
d
I
l
c

t
a
b
i

w
c
g
c
t

f

in Java, higher level comments (class, file, interface) have a higher
density than method comments (Sridharan et al., 2022), while method
comments are longer and show a higher comment density than the
lower level inline comments (Huang et al., 2023).

Comment guidelines

Our search for guidelines on documenting in Simulink and MATLAB
returned only sparse results. In particular, novice developers would
not be guided in most documenting decisions, e.g., which elements
to comment, what comment type to choose, or where to document.
Of the three guidelines of which we tested developer adherence, only
one was followed. We suspect that the official guidelines are not well
known, or mostly ignored, by open-source developers. This suggests
that developers employ their comments ad-hoc and comments differ
from project to project.

We recommend giving clear advice on when to use which of the
many Simulink comment options. We suggest investigating in more
depth why developers currently mostly use Annotations and hardly
use any of the other Simulink commenting features. We also suggest
having one designated Annotation per subsystem for the subsystem
Purpose (Summary and Extend) in a designated corner, e.g., top left.
This way, developers would know where to look for the most frequent
information. One way to help developers and nudge them into employ-
ing such Annotations would be to automatically create this designated
Annotation, partially pre-filled, at the very moment a new subsystem
is created.

Our last guideline suggestion is to always attach an Annotation to
a model element or a group of elements. If Annotations are tethered
to another element, they cannot get lost or be forgotten about as
easily if a model is refactored or otherwise modified (i.e., documented
elements are moved, copied, or deleted). Developers reading a diagram
do not have the added burden of inferring which comment is referring
to which element. Also, once an element and its comment have no
connection (anymore), reattaching them presents challenges (Schulze
et al., 2016). The title and purpose Annotations we proposed should
then be tethered to a whole subsystem. To not overwhelm users with
documentation text, we suggest to give annotations the new feature of
minimization. This way, developers can elaborate design particularities
or anything else at length, without cluttering the view canvas.

Q 2: Does the amount of documentation vary in different models?

Answering RQ 2 gave us interesting insights into the (non-)correlation
of various model metrics. For example, there is no correlation of model
size or complexity to the length of comments. As models evolve, more
model elements get added, than removed (Shrestha et al., 2023a). Only
the number of comments and the total length of comments increase
with models becoming bigger. Taking this together, it means that as
a model grows, developers do not add to existing comments but add
new ones instead. Based on our findings, it is unclear whether the
existing comments get further updated, as their length remains the
same. However, Jaskolka et al. found that Simulink comments are
among the least changed elements of Simulink models in their indus-
trial study (Jaskolka et al., 2021). This also mirrors findings in textual
programming languages, where comments are not updated along with
their corresponding code (Wen et al., 2019). This fact sets comments
up to be out of sync with its corresponding code or model.

Furthermore, we observed that a model’s age is not correlated to
any other metric of our study. This indicates that open-source projects
either develop their models (not only comments) at very different
speeds or do not consistently work on their models.

We saw a negative correlation between the number of comments
and their median length (also a negative, albeit weak correlation to the
mean length). This indicates that developers compensate for creating a
13

higher number of comments by slightly shortening each. In our manual
classification, we sometimes found short Annotations visually grouped
tightly together, forming a connected documentation text if one unites
the related Annotation texts of the group. Some developers used these
individual Annotations to format a text, because each Annotation can
be moved freely on the model canvas, so that it aligns to the developer’s
wishes.

We can see in Fig. 5 that, in the upper quintiles, the number of
comments and total comment length do not grow faster than the models
themselves. This means that there is no relative increase in commenting
effort in the biggest models. Before conducting this study, we had the
hypothesis that bigger models are built by more professional teams,
which would put more effort into commenting. This does not seem to
be the case, at least in open-source models.

Other observations, like the correlations of size metrics and cyclo-
matic complexity, align with correlations of lines of code to cyclomatic
complexity found in Java, C, and C++ (Graylin et al., 2009).

Q 3: How can the content of Simulink comments be classified?

When answering RQ 3, we found that the CCTM taxonomy covers a
wide breadth of comments of Simulink and MATLAB, already. We also
found it to be easily extendable. In our samples, only five seldom-used
categories needed to be added to form SCoT. As our work did not focus
on just class comments, but, in contrast to prior work, also considers
models that are often designed by non-software engineers, we view this
to be only minor additions. We thus expect the SCoT to be applicable
in projects using other languages with only minor adjustments.

The most frequently used higher-level category from the SCoT for
both Simulink and MATLAB is Purpose, showing that developers mostly
care about documenting ‘‘what is the code about’’.

In our manual classification process, we found (and discarded) very
few non-English comments. Even though, we did not classify them, we
briefly analyzed them after an ad-hoc translation and found them to
have similar information and format to English comments. We therefore
believe that such non-English comments could be classified similarly to
English comments.

Regarding our additional categories for extending the CCTM in RQ
3, we note that we only found few instances of the Version history
category. We expect more sophisticated projects (as were studied prior
with the CCTM) to usually handle the aspects of Version history either
n release notes or directly in the VCS’ commit history. We expect
he new category IDE Hint to be used only for languages that use a
ommon IDE. Both MATLAB code and Simulink models are commonly
sed in the MATLAB ecosystem, as a working and licensed MATLAB
nstallation is necessary for their execution, anyway.9 Lastly, the new
igher-level category Media holds the Simulink-specific sub-categories
nteractive and Picture. Classical programming languages are limited
o text-based comments. However, previous work (Prana et al., 2019)
as found media, such as images, in README files, which shows
eveloper interest in expressing their documentation in different forms.
n general, we expect other languages to enable commenting via media
ike audio or video in the future. Our new higher-level category Media
an be extended with such modalities, easily.

We imagine that comments of the Interactive category can be ex-
remely useful in program understanding — both of abstract purpose
nd inner design. Various modes or parameters of the model can
e preset, and their execution can be discovered immersively. Such
nteractive documentation thus offers the possibility to ‘‘show, not tell’’.

While answering RQ 3, we manually classified each item. Prior
ork (Schulze et al., 2016) already derived heuristics to identify some

ategories like Summary, Ownership, and Expand, for the diagram lan-
uage Ptolemy,10 with some success. We expect that similar heuristics
ould be divised for most of our categories. Similarly, we expect LLMs
o be applicable for automatic classification, see also Section 7.

9 There is a plugin for MATLAB in Visual Studio Code, but only very basic
eatures of code editing are available without a working MATLAB installation.
10 https://ptolemy.berkeley.edu/ptolemyII/index.htm

https://ptolemy.berkeley.edu/ptolemyII/index.htm

The Journal of Systems & Software 215 (2024) 112087A. Boll et al.

R

q
c
S
s

S
h
m
s
e
c
c
a

t
d
t
e
i
c

6

6

w
m
p
f
p

o

Table 6
Overview of the classification process. While 757 comments underwent an evaluation
and review, only 150 of the reviews elicited objections, and of those only 38 were not
accepted by the original evaluator and thus needed a final decision.

Evaluator evaluated
comments

objecting
reviews

final
decisions

Simulink
E1 124 25 5
E2 124 28 6
E3 126 21 12

Matlab
E1 127 33 5
E2 128 35 1
E3 128 8 9

total 757 150 38

Q 4: How does Simulink documentation compare to textual programming
languages?

The findings from demonstrated substantial similarities in both
uantitative and qualitative terms between Simulink and MATLAB
ommenting as well as Python, Java, and Smalltalk. This shows that
imulink, although a visual language with a diverse comment feature
et, is, in fact, documented similarly to textual languages.

While comparing Simulink and MATLAB to Python, Java, and
malltalk, recall that the prior studies focused on class comments from
igh-profile projects. This showed most prominently in that class com-
ents covered more of the CCTM categories per comment than in our

ample. This seems intuitive, as class comments are longer and more
xhaustive than other code comments. In fact, we expect comparing
lass comments in Python, Java, and Smalltalk with MATLAB class
omments and Simulink root subsystems’ DocBlocks, main Annotations,
nd Model Descriptions to yield similar results.

Quantitatively, the different languages showed a very similar dis-
ribution c.f . Fig. 7 – even though different research teams studied
ifferent languages, different comment types, and different project
ypes. For us, this is an indication that commenting cultures are similar
ven while crossing so many boundaries. We thus expect that there
s significant potential for knowledge transfer between findings from
omments in textual languages to visual languages, and vice versa.

. Threats to validity

.1. Internal validity

Although our manual classification process for RQ 3 is subjective,
e mitigate this threat by conducting a triple-review process with a
ajority vote and group discussions for unclear comments, similar to
rior work (Rani et al., 2021d). By employing this technique, we strive
or a more objective classification. A summary of our classification
rocess is shown in Table 6. Around 20% (150∕757) of the reviews

objected that a comment’s category was missing, too much, or wrongly
classified. In the second step, the original evaluators judged the reviews
themselves and accepted about 75% of them. This left only 38 com-
ments, where a third reviewer made a final decision after weighing
both the evaluation and review. While the evaluation and review phase
was evenly distributed by design, the steps afterward depended on
the decisions of these two phases. For example, E3 had the highest
agreement rate for reviewing MATLAB comments, i.e., they issued only
few objecting reviews to the original evaluation.

Some Simulink comments or MATLAB comments are part of a larger
context of related comments. These are usually graphically close, or in a
code line nearby. Our scripts to collect and sample comments could not
link such ‘‘related’’ comments, and they were thus gathered in isolation.
However, in our manual classification, we inspected each comment,
and could thus see, whether a nearby comment was part of the context
14

of our comment to classify.
By answering RQ 2, we found a model’s time under development
not correlating to any other metric, we computed. We hypothesize that
Simulink may compute this time faultily in some cases. On inspection
of the times, we only found 56 times from our 9033 models to be
obviously erroneous, though. These either had a negative time under
development or one of less than ten seconds — we excluded them prior
to our analysis in Fig. 4. All correlations of time under development that
are too weak (shown in Fig. 4 in gray color), are positive. This indicates
that the metric can be assumed to be correct, overall.

6.2. External validity

Our analysis set consists of open-source projects from GitHub and
Mathworks Central. Comments in industry-projects may differ signif-
icantly. Via industrial acquaintances, we know that some companies
have internal guidelines but do not know whether these cover com-
ments and how they would employ comments in Simulink. Still, our
data set is highly diverse, comprising everything from toy projects
to industry-like projects (Boll et al., 2021), and thus gives valuable
insights into how Simulink comments are used in practice.

7. Related work

7.1. Comment analysis

Code comments are an active research topic which has evolved over
decades. Already in 1976, Boehm et al. (1976) started to develop met-
rics predicting software quality from quantitatively measuring source
code commentary. In particular, they doubted that comment length
alone is an indicator of good software. They also already gave advice
of not over-explaining some code at the expense of leaving other
code uncommented. Lastly, they describe a smell detecting tool ‘‘CODE
AUDITOR’’, which checks source code for coding standards, e.g., miss-
ing header block comments. In 1978 Krogh (Krogh, 1978) not only
demanded the presence of code comments, but also certain qualities
of code comments: in the terminology of our paper, Krogh demanded
comments of software Purpose and Usage, and also gave some examples
f Pointers.

Since then, the research community studied a multitude of aspects
of code comments. Some aspects are: the importance of code com-
ments for readability, extensibility (Nurvitadhi et al., 2003; Buse and
Weimer, 2009), comment coherence (Steidl et al., 2013), comment
consistency (Wen et al., 2019), comment completeness (Huang et al.,
2020), and comment adherence to coding guidelines (Wang et al.,
2023; Rani et al., 2021a). In the last decade, research on code com-
ments often focuses on assessing the comment quality itself (Steidl
et al., 2013; Khamis et al., 2010), classifying comments automati-
cally (Schulze et al., 2016; Pascarella and Bacchelli, 2017), completing
them (Zhang et al., 2022), updating them (Schulze et al., 2016; Liu
et al., 2023; Lin et al., 2022), or even generating them (Iyer et al.,
2016; Hu et al., 2018). Such approaches often employ machine learning
techniques, which mine code and comments from open source software
projects, to create a learning database.

Our work employs a taxonomy for classifying class comments from
Rani et al. called Class Comment Type Model (CCTM). They employed
their taxonomy on Smalltalk classes (Rani et al., 2021), but also gave
a mapping of their taxonomy (Rani et al., 2021d) to prior taxonomies
used for Java and Python (Pascarella and Bacchelli, 2017; Zhang et al.,
2018). In our work, we slightly adapt and extend the CCTM for our
study set of Simulink and MATLAB projects. Kostić et al. give an
overview of code comment taxonomies (Kostić et al., 2022) and used a
proposed taxonomy to classify multi-language comments (Kostić et al.,
2023). However, their taxonomy is much more coarse-grained, than the
CCTM.

Blasi et al. (2021) studied comment duplication (Type I, III comment
clones) in Java source code. They strived to identify problematic clones

The Journal of Systems & Software 215 (2024) 112087A. Boll et al.
that were too generic or copy-pasted. We only searched for Type I com-
ment clones in Simulink and MATLAB. Our classification also did not
aim at finding problematic duplications, but at finding the duplication
origin. We thus classified comment duplication as generic/copy-paste,
library imports, IDE generation, or synthetic generation.

7.2. Simulink comments

There has also been some prior interest in studying comments
in Simulink. Pantelic et al. studied industrial Simulink projects and
their evolution, as well as commenting practices (Pantelic et al., 2019;
Jaskolka et al., 2021). In Jaskolka et al. (2021), they studied the
frequency of changes on various model comments during the model’s
development. They found that comments were least often changed.
Within the comment changes, Annotations were changed most often,
while DocBlocks remained mostly static. Pantelic et al. did not study the
frequency of changes on Element Descriptions (block description, signal
description) or Notes — we considered both features in our study.
They also did not analyze the actual comment information or other
characteristics like lengths or duplication. As they studied an industrial
project, the experimental data and most basic information about the
project itself is not available. In their anecdote-driven work (Pantelic
et al., 2019), Pantelic et al. argue that current Simulink modeling
practice faces several challenges: a lack of automation, (high quality)
tools, and documentation templates. In fact, even a standard process of
documentation is missing in a culture of prototype first, documentation
third (or never). Pantelic et al. refute that (Simulink) models are already
documentation, as the model only provides syntactical understand-
ing, while documentation provides additional semantic understanding.
They demand good documentation providing information about (1.)
software requirements specification, which should give a model’s black
box behavior in a more abstract way than the direct implementation;
and (2.) software design description (SDD), which should give semantics
about the internal design, anticipated changes, hierarchy, and inter-
faces. The research group around Pantelic also developed a template
for including SDD information into the model and a tool helping with
the documentation process (Schaap et al., 2018). DocBlocks are created
automatically, so that the developers can manually enter the documen-
tation into a designated location. Their tool creates such DocBlocks
for Purpose, Internal Design (focusing on interfaces), Rationale, and
Anticipated Changes (see SDD, above). Developers are also expected
to document changelogs and system acronyms/notation/definitions.
Overall, their template covers the most-used categories of the CCTM
used in our work.

While there are some studies, collecting open-source Simulink mod-
els (Chowdhury et al., 2018; Shrestha et al., 2022), and providing vari-
ous metrics of models (Boll et al., 2021; Amorim et al., 2023; Shrestha
et al., 2023b), none of those studies analyzed Simulink comments.

To the best of our knowledge, we are the first to study the com-
menting practice in open-source Simulink projects, as well as analyzing
actual comment information of Simulink models. We are not aware of
studies of comments in other visual modeling languages like UML or
SysML.

8. Conclusion and future work

In this study, we found that open source MATLAB and Simulink
projects feature a wide variety of types of comments, covering nearly
the whole spectrum of the commentary taxonomy CCTM in addition
to others. Many of the comments are duplicated by various means and
are present in all levels of the model hierarchy, while developers focus
mostly on the highest levels. We have shown that bigger and more
complex models feature more comments and a higher total comment
length, while each comment does not change in size. Model age on
the other hand is neither a factor in model size nor comment amount.
Finally, we found that the CCTM taxonomy is applicable for languages
15
of different paradigms, and we extended it into a more complete
taxonomy, named SCoT. We expect SCoT to be useful for classifying
comments of all types, and languages, while probably needing only
slight adjustments or additions.

We found comments in Simulink to only stand out in their many
comment types in comparison to textual languages. In terms of in-
formation diversity and distribution, Simulink comments fall in line
with all other studied languages. We proposed a number of ways to
support developers in commenting their Simulink models. This could be
done by modifying, or adding Simulink IDE features, greatly extending
guidelines on Simulink comments, and comment smell detection –
we expect many of our suggestions to also be useful for other visual
languages and their tools.

While our work only learns from artifacts, the models and source
code, in the future, we want to directly survey developers. Receiving
opinions on how developers intend to document, their thought process
while doing so, and their struggles, would put our findings into a more
complete perspective. Similarly, we could scrape Simulink documenta-
tion related discussion from forums or mailing lists, like in Rani et al.
(2021b), to gather insights into Simulink-specific documentation issues.

As the current guidelines on MATLAB and Simulink commentary
are leaving many gaps and are not widely followed, we would like to
create exhaustive modeling guidelines together with practitioners. This
would be particularly useful in partnership with an industrial partner,
as our current knowledge only comes from open source projects. Af-
ter guideline synthesis, we plan to build a comment smell detector,
which finds parts that need (more) commentary or even automatically
refactors them.

CRediT authorship contribution statement

Alexander Boll: Writing – review & editing, Writing – orig-
inal draft, Visualization, Validation, Software, Resources, Project
administration, Methodology, Data curation, Conceptualization. Pooja
Rani: Writing – review & editing, Writing – original draft, Super-
vision, Methodology, Data curation, Conceptualization. Alexander
Schultheiß: Conceptualization, Data curation, Methodology, Writing
– review & editing. Timo Kehrer: Writing – review & editing,
Supervision, Methodology, Conceptualization, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Our experimental data is open-access at https://doi.org/10.5281/
zenodo.5259648 our source code is open-access at https://doi.org/10.
6084/m9.figshare.24631350.

References

Abrahão, Silvia, Bourdeleau, Francis, Cheng, Betty, Kokaly, Sahar, Paige, Richard,
Stöerrle, Harald, Whittle, Jon, 2017. User experience for model-driven engineering:
Challenges and future directions. In: 2017 ACM/IEEE 20th International Conference
on Model Driven Engineering Languages and Systems. MODELS, pp. 229–236.

Aghajani, Emad, Nagy, Csaba, Linares-Vásquez, Mario, Moreno, Laura, Bavota, Gabriele,
Lanza, Michele, Shepherd, David C, 2020. Software documentation: the practition-
ers’ perspective. In: Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. pp. 590–601.

Amorim, Tiago, Boll, Alexander, Bachmann, Ferry, Kehrer, Timo, Vogelsang, Andreas,
Pohlheim, Hartmut, 2023. Simulink bus usage in practice: an empirical study.
J. Object Technol. 22 (2), 2:1–14, The 19th European Conference on Modelling
Foundations and Applications (ECMFA 2023).

Barnard, Paul, 2005. Software development principles applied to graphical model
development. In: AIAA Modeling and Simulation Technologies Conference and

Exhibit. p. 5888.

https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.5281/zenodo.5259648
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
https://doi.org/10.6084/m9.figshare.24631350
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb1
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb1
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb1
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb1
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb1
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb1
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb1
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb2
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb2
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb2
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb2
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb2
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb2
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb2
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb3
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb3
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb3
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb3
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb3
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb3
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb3
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb4
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb4
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb4
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb4
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb4

The Journal of Systems & Software 215 (2024) 112087A. Boll et al.
Blasi, Arianna, Stulova, Nataliia, Gorla, Alessandra, Nierstrasz, Oscar, 2021.
RepliComment: Identifying clones in code comments. J. Syst. Softw. 182, 111069.

Boehm, Barry W., Brown, John R., Lipow, Myron, 1976. Quantitative evaluation of
software quality. In: Proceedings of the 2nd International Conference on Software
Engineering. pp. 592–605.

Boll, Alexander, Brokhausen, Florian, Amorim, Tiago, Kehrer, Timo, Vogelsang, An-
dreas, 2021. Characteristics, potentials, and limitations of open-source Simulink
projects for empirical research. Softw. Syst. Model. 20 (6), 2111–2130.

Boll, Alexander, Vieregg, Nicole, Kehrer, Timo, 2022. Replicability of experimen-
tal tool evaluations in model-based software and systems engineering with
MATLAB/Simulink. Innov. Syst. Softw. Eng. 1–16.

Buse, Raymond P.L., Weimer, Westley R., 2009. Learning a metric for code readability.
IEEE Trans. Softw. Eng. 36 (4), 546–558.

Chowdhury, Shafiul Azam, Varghese, Lina Sera, Mohian, Soumik, Johnson, Taylor T,
Csallner, Christoph, 2018. A curated corpus of Simulink models for model-based
empirical studies. In: Proceedings of the 4th International Workshop on Software
Engineering for Smart Cyber-Physical Systems. pp. 45–48.

De Brito, Moacyr AG, Sampaio, Leonardo P, Luigi, G, e Melo, Guilherme A,
Canesin, Carlos A, 2011. Comparative analysis of MPPT techniques for PV appli-
cations. In: 2011 International Conference on Clean Electrical Power. ICCEP, IEEE,
pp. 99–104.

Elshoff, James L., Marcotty, Michael, 1982. Improving computer program readability
to aid modification. Commun. ACM 25 (8), 512–521.

Graylin, Jay, Hale, Joanne E, Smith, Randy K, David, Hale, Kraft, Nicholas A,
Charles, Ward, et al., 2009. Cyclomatic complexity and lines of code: empirical
evidence of a stable linear relationship. J. Softw. Eng. Appl. 2 (03), 137.

Haghighatkhah, Alireza, Banijamali, Ahmad, Pakanen, Olli-Pekka, Oivo, Markku, Ku-
vaja, Pasi, 2017. Automotive software engineering: A systematic mapping study. J.
Syst. Softw. 128, 25–55.

He, Hao, 2019. Understanding source code comments at large-scale. In: Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. pp. 1217–1219.

Hu, Xing, Li, Ge, Xia, Xin, Lo, David, Jin, Zhi, 2018. Deep code comment generation.
In: Proceedings of the 26th Conference on Program Comprehension. pp. 200–210.

Huang, Yuan, Guo, Hanyang, Ding, Xi, Shu, Junhuai, Chen, Xiangping, Luo, Xiapu,
Zheng, Zibin, Zhou, Xiaocong, 2023. A comparative study on method comment
and inline comment. ACM Trans. Softw. Eng. Methodol. 32 (32), 1–26.

Huang, Yuan, Jia, Nan, Shu, Junhuai, Hu, Xinyu, Chen, Xiangping, Zhou, Qiang, 2020.
Does your code need comment? Softw. - Pract. Exp. 50 (3), 227–245.

Iyer, Srinivasan, Konstas, Ioannis, Cheung, Alvin, Zettlemoyer, Luke, 2016. Summarizing
source code using a neural attention model. In: 54th Annual Meeting of the
Association for Computational Linguistics 2016. Association for Computational
Linguistics, pp. 2073–2083.

Jaskolka, Monika, Pantelic, Vera, Wassyng, Alan, Lawford, Mark, Paige, Richard, 2021.
Repository mining for changes in Simulink models. In: 2021 ACM/IEEE 24th
International Conference on Model Driven Engineering Languages and Systems.
MODELS, pp. 46–57.

Jerzyk, Marcel, Madeyski, Lech, 2023. Code smells: A comprehensive online catalog and
taxonomy. In: Developments in Information and Knowledge Management Systems
for Business Applications: Volume 7. Springer, pp. 543–576.

Khamis, Ninus, Witte, René, Rilling, Juergen, 2010. Automatic quality assessment of
source code comments: the JavadocMiner. In: Natural Language Processing and
Information Systems: 15th International Conference on Applications of Natural
Language To Information Systems, NLDB 2010, Cardiff, UK, June 23–25, 2010.
Proceedings 15. Springer, pp. 68–79.

Kostić, Marija, Batanović, Vuk, Nikolić, Boško, 2023. Monolingual, multilingual and
cross-lingual code comment classification. Eng. Appl. Artif. Intell. 124, 106485.

Kostić, Marija, Srbljanović, Aleksa, Batanović, Vuk, Nikolić, Boško, 2022. Code
comment classification taxonomies. In: Proceedings of the Ninth IcETRAN
Conference.

Krogh, Fred T., 1978. Algorithms policy. ACM Trans. Math. Softw. 4 (2), 97–99.
Liebel, Grischa, Marko, Nadja, Tichy, Matthias, Leitner, Andrea, Hansson, Jörgen, 2014.

Assessing the state-of-practice of model-based engineering in the embedded systems
domain. In: Dingel, Juergen, Schulte, Wolfram, Ramos, Isidro, Abrahão, Silvia,
Insfran, Emilio (Eds.), Model-Driven Engineering Languages and Systems. Springer
International Publishing, Cham, pp. 166–182.

Lin, Bo, Wang, Shangwen, Liu, Zhongxin, Xia, Xin, Mao, Xiaoguang, 2022. Predictive
comment updating with heuristics and ast-path-based neural learning: A two-phase
approach. IEEE Trans. Softw. Eng. 49 (4), 1640–1660.

Liu, Shifan, Cui, Zhanqi, Chen, Xiang, Yang, Jun, Li, Li, Zheng, Liwei, 2023. TBCUP: A
transformer-based code comments updating approach. In: 2023 IEEE 47th Annual
Computers, Software, and Applications Conference. COMPSAC, IEEE, pp. 892–897.

Maalej, Walid, Tiarks, Rebecca, Roehm, Tobias, Koschke, Rainer, 2014. On the
comprehension of program comprehension. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 23 (4), 1–37.
16

Mall, Rajib, 2018. Fundamentals of Software Engineering. PHI Learning Pvt. Ltd..
Misra, Vishal, Reddy, Jakku Sai Krupa, Chimalakonda, Sridhar, 2020. Is there a corre-
lation between code comments and issues? an exploratory study. In: Proceedings
of the 35th Annual ACM Symposium on Applied Computing. pp. 110–117.

Nurvitadhi, Eriko, Leung, Wing Wah, Cook, Curtis, 2003. Do class comments aid Java
program understanding? In: 33rd Annual Frontiers in Education, 2003, Vol. 1. FIE
2003, IEEE, p. T3C.

Pantelic, Vera, Schaap, Alexander, Wassyng, Alan, Bandur, Victor, Lawford, Mark,
2019. Something is rotten in the state of documenting Simulink models. In:
MODELSWARD. pp. 503–510.

Pascarella, Luca, Bacchelli, Alberto, 2017. Classifying code comments in Java open-
source software systems. In: 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories. MSR, pp. 227–237.

Prana, Gede Artha Azriadi, Treude, Christoph, Thung, Ferdian, Atapattu, Thushari,
Lo, David, 2019. Categorizing the content of GitHub readme files. Empir. Softw.
Eng. 24, 1296–1327.

Rani, Pooja, Abukar, Suada, Stulova, Nataliia, Bergel, Alexandre, Nierstrasz, Oscar,
2021a. Do comments follow commenting conventions? a case study in Java and
Python. In: 2021 IEEE 21st International Working Conference on Source Code
Analysis and Manipulation. SCAM, IEEE, pp. 165–169.

Rani, Pooja, Birrer, Mathias, Panichella, Sebastiano, Ghafari, Mohammad, Nier-
strasz, Oscar, 2021b. What do developers discuss about code comments? In:
2021 IEEE 21st International Working Conference on Source Code Analysis and
Manipulation. SCAM, IEEE, pp. 153–164.

Rani, Pooja, Blasi, Arianna, Stulova, Nataliia, Panichella, Sebastiano, Gorla, Alessandra,
Nierstrasz, Oscar, 2023c. A decade of code comment quality assessment: A
systematic literature review. J. Syst. Softw. 195, 111515.

Rani, Pooja, Panichella, Sebastiano, Leuenberger, Manuel, Di Sorbo, Andrea, Nier-
strasz, Oscar, 2021d. How to identify class comment types? A multi-language
approach for class comment classification. J. Syst. Softw. 181, 111047.

Rani, Pooja, Panichella, Sebastiano, Leuenberger, Manuel, Ghafari, Mohammad, Nier-
strasz, Oscar, 2021. What do class comments tell us? An investigation of comment
evolution and practices in pharo smalltalk. Empir. Softw. Eng. 26 (6), 112.

Raskin, Jef, 2005. Comments are more important than code: The thorough use of
internal documentation is one of the most-overlooked ways of improving software
quality and speeding implementation. Queue 3 (2), 64–65.

Schaap, Alexander, Marks, Gordon, Pantelic, Vera, Lawford, Mark, Selim, Gehan,
Wassyng, Alan, Patcas, Lucian, 2018. Documenting Simulink designs of embedded
systems. In: Proceedings of the 21st ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings. MODELS ’18,
Association for Computing Machinery, New York, NY, USA, pp. 47–51.

Schroeder, Jan, Berger, Christian, Staron, Miroslaw, Herpel, Thomas, Knauss, Alessia,
2016. Unveiling anomalies and their impact on software quality in model-based
automotive software revisions with software metrics and domain experts. In:
Proceedings of the 25th International Symposium on Software Testing and Analysis.
pp. 154–164.

Schulze, Christoph Daniel, Plöger, Christina, von Hanxleden, Reinhard, 2016. On
comments in visual languages. In: Diagrammatic Representation and Inference:
9th International Conference, Diagrams 2016, Philadelphia, PA, USA, August 7–10,
2016, Proceedings 9. Springer, pp. 219–225.

Shrestha, Sohil Lal, Boll, Alexander, Chowdhury, Shafiul Azam, Kehrer, Timo, Csall-
ner, Christoph, 2023a. EvoSL: A large open-source corpus of changes in Simulink
models & projects. In: MODELS ’23: ACM/IEEE 26th International Conference on
Model Driven Engineering Languages and Systems. pp. 273–284.

Shrestha, Sohil Lal, Chowdhury, Shafiul Azam, Csallner, Christoph, 2022. SLNET: A
redistributable corpus of 3rd-party Simulink models. In: Proceedings of the 19th
International Conference on Mining Software Repositories. MSR ’22, Association
for Computing Machinery, New York, NY, USA, pp. 237–241.

Shrestha, Sohil Lal, Chowdhury, Shafiul Azam, Csallner, Christoph, 2023b. Replicability
study: Corpora for understanding Simulink models & projects.

Sridharan, Murali, Mäntylä, Mika, Claes, Maëlick, Rantala, Leevi, 2022. SoCCMiner:
a source code-comments and comment-context miner. In: Proceedings of the 19th
International Conference on Mining Software Repositories. pp. 242–246.

Steidl, Daniela, Hummel, Benjamin, Juergens, Elmar, 2013. Quality analysis of
source code comments. In: 2013 21st International Conference on Program
Comprehension. Icpc, Ieee, pp. 83–92.

Storey, Margaret-Anne, Ryall, Jody, Singer, Janice, Myers, Del, Cheng, Li-Te,
Muller, Michael, 2009. How software developers use tagging to support reminding
and refinding. IEEE Trans. Softw. Eng. 35 (4), 470–483.

Triola, Mario F, Goodman, William Martin, Law, Richard, Labute, Gerry, 2006.
Elementary Statistics. Pearson/Addison-Wesley Reading, MA.

Wang, Chao, He, Hao, Pal, Uma, Marinov, Darko, Zhou, Minghui, 2023. Suboptimal
comments in Java projects: From independent comment changes to commenting
practices. ACM Trans. Softw. Eng. Methodol. 32 (2), 1–33.

Weiland, Jens, Manhart, Peter, 2014. A classification of modeling variability in
Simulink. In: Proceedings of the 8th International Workshop on Variability

Modelling of Software-Intensive Systems. pp. 1–8.

http://refhub.elsevier.com/S0164-1212(24)00132-8/sb5
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb5
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb5
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb6
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb6
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb6
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb6
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb6
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb7
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb7
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb7
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb7
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb7
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb8
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb8
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb8
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb8
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb8
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb9
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb9
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb9
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb10
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb10
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb10
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb10
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb10
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb10
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb10
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb11
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb11
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb11
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb11
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb11
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb11
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb11
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb12
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb12
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb12
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb13
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb13
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb13
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb13
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb13
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb14
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb14
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb14
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb14
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb14
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb15
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb15
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb15
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb15
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb15
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb16
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb16
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb16
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb17
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb17
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb17
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb17
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb17
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb18
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb18
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb18
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb19
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb19
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb19
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb19
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb19
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb19
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb19
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb20
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb20
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb20
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb20
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb20
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb20
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb20
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb21
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb21
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb21
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb21
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb21
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb22
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb22
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb22
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb22
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb22
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb22
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb22
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb22
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb22
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb23
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb23
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb23
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb24
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb24
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb24
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb24
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb24
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb25
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb26
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb26
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb26
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb26
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb26
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb26
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb26
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb26
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb26
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb27
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb27
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb27
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb27
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb27
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb28
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb28
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb28
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb28
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb28
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb29
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb29
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb29
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb29
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb29
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb30
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb31
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb31
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb31
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb31
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb31
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb32
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb32
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb32
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb32
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb32
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb33
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb33
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb33
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb33
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb33
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb34
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb34
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb34
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb34
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb34
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb35
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb35
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb35
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb35
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb35
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb36
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb36
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb36
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb36
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb36
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb36
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb36
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb37
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb37
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb37
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb37
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb37
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb37
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb37
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb38
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb38
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb38
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb38
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb38
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb39
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb39
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb39
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb39
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb39
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb40
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb40
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb40
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb40
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb40
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb41
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb41
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb41
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb41
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb41
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb42
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb42
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb42
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb42
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb42
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb42
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb42
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb42
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb42
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb43
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb43
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb43
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb43
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb43
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb43
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb43
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb43
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb43
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb44
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb44
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb44
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb44
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb44
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb44
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb44
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb45
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb45
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb45
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb45
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb45
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb45
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb45
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb46
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb46
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb46
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb46
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb46
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb46
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb46
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb47
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb47
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb47
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb48
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb48
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb48
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb48
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb48
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb49
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb49
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb49
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb49
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb49
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb50
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb50
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb50
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb50
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb50
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb51
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb51
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb51
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb52
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb52
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb52
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb52
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb52
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb53
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb53
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb53
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb53
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb53

The Journal of Systems & Software 215 (2024) 112087A. Boll et al.

E
U
i

Wen, Fengcai, Nagy, Csaba, Bavota, Gabriele, Lanza, Michele, 2019. A large-scale empir-
ical study on code-comment inconsistencies. In: 2019 IEEE/ACM 27th International
Conference on Program Comprehension. ICPC, IEEE, pp. 53–64.

Wirfs-Brock, Rebecca, McKean, Alan, 2003. Object Design: Roles, Responsibilities, and
Collaborations. Addison-Wesley Professional.

Woodfield, Scott N., Dunsmore, Hubert E., Shen, Vincent Y., 1981. The effect of
modularization and comments on program comprehension. In: Proceedings of the
5th International Conference on Software Engineering. pp. 215–223.

Xia, Xin, Bao, Lingfeng, Lo, David, Xing, Zhenchang, Hassan, Ahmed E., Li, Shan-
ping, 2018. Measuring program comprehension: A large-scale field study with
professionals. IEEE Trans. Softw. Eng. 44 (10), 951–976.

Zhang, Jingyi, Xu, Lei, Li, Yanhui, 2018. Classifying Python code comments based on
supervised learning. In: Meng, Xiaofeng, Li, Ruixuan, Wang, Kanliang, Niu, Baoning,
Wang, Xin, Zhao, Gansen (Eds.), Web Information Systems and Applications.
Springer International Publishing, Cham, pp. 39–47.

Zhang, Xiaowei, Zou, Weiqin, Chen, Lin, Li, Yanhui, Zhou, Yuming, 2022. Towards the
analysis and completion of syntactic structure ellipsis for inline comments. IEEE
Trans. Softw. Eng. 49 (4), 2285–2302.

Alexander Boll is a doctoral student at University of Bern and is part of the Software
ngineering Group since 2022. Before that, he studied computer science at Humboldt-
niversität zu Berlin, where he also started his doctoral studies. His research interest

s Open Science in the modeling community.
17
Pooja Rani is a Postdoctoral researcher at the University of Zurich (Switzerland).
Her focus areas involve conducting empirical studies, developing methodology, and
building tools to support developers in understanding code. Specifically, she studies
code comments from various software systems and builds tools to improve source code
comprehension. She finished her Ph.D. at the University of Bern in 2022 and masters
at the Birla Institute of Technology and Science-Pilani (India) in 2017.

Alexander Schultheiß is a doctoral student at University of Paderborn. Before that, he
studied Computer Science at the Friedrich Schiller University Jena. During his studies,
he focused on computer vision and software engineering. His main research interests
lie in the systematic support of multi-variant software development, with a focus on
propagating code changes between cloned variants.

Timo Kehrer is a professor at the Institute of Computer Science of the University of
Bern (Switzerland), chairing the Software Engineering Research and Teaching Group.
Before that, Kehrer was an assistant professor at the Humboldt-Universität zu Berlin
(Germany), heading the Model-Driven Software Engineering Group from 2017 to 2021.
Kehrer worked as a postdoctoral research fellow in the Dependable Evolvable Pervasive
Software Engineering Group at Politecnico di Milano (Italy) from 2015 to 2016, and
as a research assistant in the Software Engineering and Database Systems Group of the
University of Siegen (Germany) from 2011 to 2015. He has active research interests
in various fields of model-based software and systems engineering, with a particular
focus on software evolution.

http://refhub.elsevier.com/S0164-1212(24)00132-8/sb54
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb54
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb54
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb54
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb54
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb55
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb55
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb55
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb56
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb56
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb56
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb56
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb56
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb57
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb57
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb57
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb57
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb57
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb58
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb58
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb58
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb58
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb58
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb58
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb58
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb59
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb59
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb59
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb59
http://refhub.elsevier.com/S0164-1212(24)00132-8/sb59

	Beyond code: Is there a difference between comments in visual and textual languages?
	Introduction
	Background
	Simulink
	Simulink Comments
	MATLAB Comments
	Simulink and MATLAB Comment Guidelines
	The Class Comment Type Model (CCTM)

	Methodology
	Research Questions
	Study Subjects and Data Collection
	Data Set and Sample
	Extraction of Simulink Comments
	Extraction of MATLAB Comments
	Computational analysis
	Manual Classification Process

	Results
	General Measurement and Properties
	Comment Duplication and Duplication Reasons
	Comments at Different Levels of the Subsystem Hierarchy
	Comment Guidelines
	Deriving SCoT from CCTM
	Simulink and MATLAB Comment Information

	Discussion
	General Measurement and Properties
	Comment Duplication and Duplication Reasons
	Comments at Different Levels of the Subsystem Hierarchy
	Comment Guidelines

	Threats to validity
	Internal Validity
	External Validity

	Related Work
	Comment Analysis
	Simulink Comments

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

