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Abstract—Software is often released in multiple variants to
meet all customer requirements. While software product lines
address this need by advocating the development of an inte-
grated software platform, practitioners frequently rely on ad-
hoc reuse based on a principle which is known as clone-and-
own. This practice avoids high up-front investments, as new
variants of a software family are created by simply copying
and adapting an existing variant, but maintenance costs explode
once a critical number of variants is reached. With our research
project VARIANTSYNC, we aim to bridge the gap between
clone-and-own and product lines by combining the minimal
overhead and flexibility of clone-and-own with the systematic
handling of variability in software product lines. The key idea
is to transparently integrate product-line concepts with variant
management facilities known from version control systems in
order to automatically synchronize a set of evolving variants.
We believe that VARIANTSYNC has the potential to change the
way how practitioners develop multi-variant software systems for
which it is hard to foresee which variants will be added in the
future.

Index Terms—Software product lines, clone-and-own, feature
traceability, configuration management

I. INTRODUCTION

Context and Motivation — The need for software mass-
customization has been recognized a long time ago within
Parnas’ research on program families in the 1970s [1].
The field later evolved into software product-line engineering
(SPLE) [2], [3], promoting techniques to systematically man-
age software variability. A software product line (SPL) is a set
of similar software products (i.e., variants) with well-defined
commonalities and variabilities, developed based on an inte-
grated software platform. Each product of an SPL is identified
by a unique combination of features (aka. configuration) [3],
a feature being an end-user visible characteristic of a product.
The set of valid feature combinations (i.e., configurations) is
typically specified in a feature model [4], [5]. A product line
is implemented by mapping the features onto implementation
artifacts and choosing a variation mechanism which specifies
how to generate individual products (re-)using the common
artifacts (e.g., using preprocessors, build systems, or plug-
ins) [3], [4], [6]. Ideally, deriving a variant then amounts to
selecting the desired features in a configurator tool.

However, product lines have high up-front investments,
require a radical change in the development organization, and
the actual return-on-investment is often hard to estimate [7],
[8], [9]. Since it is typically unknown which and how many
variants are required in the future [10], [11], the state-of-
practice in engineering multi-variant software systems often
follows a common pattern: The development starts with a
single variant, where the overhead of product lines does not
pay off. Later, further variants are added by copying and
adapting an existing variant, and all of these forked variants
may evolve in parallel; a principle which is generally known
as clone-and-own [7], [8], [10], [12]. However, if a critical
number of variants is reached, maintaining such a software
family becomes impractical. Propagating changes such as bug
fixes to other variants is increasingly difficult and ambiguous
for a growing number of variants [7], [8], [10], [12], [13].

Research Vision and Approach — With our research project
VARIANTSYNC, we aim to overcome this dilemma through a
new development methodology which bridges the gap between
clone-and-own and product lines. The goal is to get rid
of the limitations of both approaches while preserving their
advantages. We want to combine and integrate the minimal
overhead of clone-and-own with the systematic handling of
variability of SPLs. Instead of forcing developers to employ
a heavyweight product-line process, we transparently support
their on-going development with concepts and techniques from
software product-line engineering and version control systems.
In our envisioned methodology, software development is per-
formed according to a session-oriented editing model where
the features being touched during an editing session are made
explicit by developers. This way, software artifacts of all
variants shall be mapped to features, drawn from a common set
of features, with minimal input by developers. The gathered
domain knowledge shall be exploited to support the synchro-
nization of variants during evolution. That is, improvements
in one variant shall be propagated to all other variants sharing
the affected features in a highly automated fashion. Finally, the
domain knowledge shall also serve as a basis for automatically
creating variants that implement a new feature combination.
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Fig. 1. Motivation, research vision, and practical impact of VARIANTSYNC.

Practical Impact — Fig. 1 illustrates how VARIANTSYNC
(green area) bridges the gap between clone-and-own (red spot
or area) and product lines (blue spot) w.r.t. three dimensions,
emphasizing the flexibility and novel characteristics of our
proposed methodology. Fig. 1(a) focuses on the degree of
completeness of feature mappings. Whereas each artifact of
a product line is mapped to features [3], [4], there is no such
mapping for clone-and-own [14]. With VARIANTSYNC, any
subset of both existing and newly developed artifacts may
be mapped to features. Fig. 1(b) shows the extent to which
artifacts implementing the same feature are synchronized
among variants, and the delay of such a synchronization. As
artifacts are reused across variants in product lines [3], [4], all
possible variants are instantly synchronized. With clone-and-
own, changes to artifacts in one variant are propagated to other
dedicated variants on demand [12], [15], typically leading to
very few variants being synchronized. VARIANTSYNC enables
the synchronization of changes into any subset of variants at
any time. Fig. 1(c) addresses the organization of the devel-
opment of a family of software variants. With product lines,
release cycles of variants need to be identical and developers
are responsible for features. In clone-and-own, release cycles
of variants are often not aligned [10], [11] and developers are
typically responsible for variants [7], [8], [10], [12], [13] rather
than features. VARIANTSYNC enables arbitrary release cycles
of individual variants and supports the concurrent development
of both features and variants.

II. STATE-OF-THE-ART AND RESEARCH GAPS

Effectively managing the evolution of variant-rich software
systems is still among the main challenges of software engi-
neering [16], [17], though being tackled from many different
angles. The terminology introduced by Antkiewicz et al. [10]
distinguishes seven levels in the continuum between ad-hoc
clone-and-own (L0) and rigorous SPLE (L6). While product
derivation is fully automated on level L6, it may be followed
by a manual post-processing on level L5. This adds some
flexibility, but leads to the problem of how to consistently co-
evolve individual products and centrally managed development
artifacts [18]. At the other side of the spectrum, level L1
enhances ad-hoc clone-and-own by collecting provenance data
about variants, such as revision graphs created through branch-
ing capabilities of version control systems [19], potentially
extended by annotating commits with variability informa-
tion [20]. The management of parallel development branches
is supported by basic repository services. However, classical
merging [21] is inadequate for synchronizing variants. Variants

are supposed to have differences, whereas merging tries to get
rid of them by integrating all the changes into a unified version.
The synchronization of variants can only be achieved by
propagating the desired changes from one branch to another,
which is typically referred to as cherry-picking changes [22]
and which is still a labor-intensive task prone to errors [23].
In the sequel, we will have a closer look at related work
which, like our approach, aims to improve the development
according to levels L2, L3, and L4, where clone-and-own is
further supported by exploiting additional domain knowledge
such as features, configurations, and feature models.

Some approaches aim to support clone-and-own by keeping
the traditional version space organization of version control
systems. Rubin et al. [7], [24], present a set of conceptual
operators which, in addition to deriving new variants, can be
also used to propagate features between variants. However,
they do not provide concrete instantiations of the proposed
operators, but only discuss the applicability of existing tech-
niques. By simulating the development of a family of cloned
projects, Ji et al. [14] evaluated the potential of embedded fea-
ture annotations to propagate changes between these projects.
However, the simulation study has been conducted in a purely
manual fashion. Solutions of how feature mappings can be
efficiently gathered and maintained as well as how features can
be propagated in an automated fashion are out of the scope
of their study. In sum, while existing research indicates the
potential benefits of entering the area between ad-hoc clone-
and-own and software product lines (Fig. 1), to date, this
would require extensive manual effort and is not yet feasible.

Dating back to ideas of Conradi and Westfechtel [19],
variation control systems [25], [26], [27] and filtered SPLs [28]
get rid of parallel development branches by using an in-
tegrated software platform. As opposed to classical SPLE,
developers work on a single variant which is a projection
of the SPL and which is obtained from and re-integrated
back into the integrated platform using the established check-
out/modify/commit workflow of version control systems. Lins-
bauer et al. use their tool ECCO and combinatorics of con-
figurations to map features to parts of artifacts and to semi-
automatically extract, compose, and complete new variants [9],
[29]. However, alternative organizations of the version space
never made it into mainstream version control systems [30].
Methodologies based on an integrated software platform suffer
from similar organizational constraints and flexibility problems
as traditional SPLs (cf. Fig. 1), and there is no control on how
changes in one variant affect other variants.

Finally, there is a whole line of research which aims to
support the migration of a set of variants into an SPL. Thereby,
feature locations across the existing implementation artifacts
need to be recovered after the fact [9], [29], [31], [32], [33],
[34]. All works on feature location recovery lament the lack
of precision and the high effort of the task, even if using a
semi-automated technique [14], [35]. A migration requires to
stop the development of all variants, sometimes for months or
years [7], [32]. The migration to a product line may even fail
and thus bears considerable economical risks [34].
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Fig. 2. Illustration of the VARIANTSYNC approach and research goals.

III. OVERVIEW OF THE APPROACH

Basic Assumptions — To gather domain knowledge on fea-
tures and configurations, we rely on two reasonable assump-
tions which are justified within in the literature. First, we as-
sume that developers agree on a common nomenclature for the
domain (i.e., features) and, for a given variant, the respective
developers know which subset of features is implemented by
that variant [9], [11], [29]. The set of available features is typi-
cally specified by the product documentation [36], and can also
be retrieved from other departments within an organization
(e.g., the sales department knows about product features) [9].
Second, we assume that developers know which feature or
feature interaction they are working on [14]. Kästner et al. [32]
argue that developers typically have this piece of domain
knowledge, and expert interviews on industrial clone-and-own
show that it is most pronounced during implementation [8].

Development Methodology — Our development methodol-
ogy follows a session-oriented editing model, in which features
being touched during an editing session are made explicit by
developers in terms of a propositional formula over features,
referred to as feature context of that editing session. This is
illustrated in Fig. 2, using a snapshot of the development of a
simple graph management software. The snapshot comprises
four features and four variants implementing different configu-
rations (upper right). The historical evolution of these variants
is shown by the revision graph in the upper left, annotated by
the feature contexts which led to the revisions r6, r8, r10, and
r12. Note that revisions in the revision graph shown in Fig. 2
encapsulate editing sessions associated to a dedicated feature
context. They may be committed to a version control system
to become repository revisions, but editing sessions may also
be more fine-grained than repository commits.

Feature contexts and configurations can be used to identify
the target variants which need to be synchronized in response

to evolution steps. For example, no synchronization is needed
in response to the evolution step leading to revision r6, as it
affects the feature OptimalConnection which is only comprised
by the modified variant v4. In contrast, the changes leading to
revision r8 of variant v2 have been performed under feature
context ¬Weighted and thus shall be propagated (green arrow)
to variant v2, which does not comprise that feature. Similarly,
the changes to the shared feature Graph in the evolution step
leading to revision r10 of variant v1 shall be propagated to all
other variants. The change resulting in revision r12 of variant
v3 needs to be propagated to two variants. The red arrow
symbolizes that the synchronization of variant v1 cannot be
performed automatically due to synchronization conflicts.

The feature context is not only used to determine target
variants, but also to establish a mapping from features to
artifacts in the currently edited variant as well as in other
variants (bottom left). This feature mapping may also be
employed to derive new variants and to reconfigure existing
variants. For example, we may obtain a new variant comprising
the features Directed and Weighted by starting from variant v1
and transferring an implementation of feature Weighted from
variant v3 or v4, or by starting from variant v4 and deleting
all parts related to feature OptimalConnection. In general, an
additive strategy assumes that the start variant comprises a
subset of the features of the desired variant. For each feature
which is to be added, we must choose a suitable donor variant
for obtaining its implementation. A subtractive reconfiguration
strategy assumes that the set of features contained by the
start variant is a superset of the features which shall be
comprised by the desired variant. Those parts implementing
the superfluous features must be removed.

IV. RESEARCH GOALS

Realizing our vision is faced with fundamental technical
challenges from which we derive the following research goals:

RG1: Transparent Collection and Management of Feature
Mappings: To physically propagate artifact changes, a basic
prerequisite is that features are mapped to development arti-
facts or fragments thereof. Our goal is to reach a high degree
of feature mapping with minimal manual effort. First, we aim
at automated techniques to establish a feature mapping already
during development (RG1.a in Fig. 2). Second, we are going to
synchronize feature mappings along with the synchronization
of artifact changes when variants evolve (RG1.b). Finally, to
support the completion and correction of feature mappings, we
even want to synchronize mappings between variants without
any associated artifact changes (RG1.c).

RG2: Propagation of Changes Between Variants: By collecting
knowledge about which features are relevant for which variants
and which features are involved in which changes, we want
to automate the synchronization of variants by propagat-
ing changes between them. Thereby, we aim at supporting
development teams for variants, as in clone-and-own, and
development teams for features, as in SPLE (RG2.a). For both
scenarios, synchronization conflicts and other kinds of change



propagation failures shall be handled with minimal developer
interaction for a set of synchronization targets (RG2.b).

RG3: Reconfiguration of Existing and Generation of New
Variants: Even if synchronizing a set of variants is fully au-
tomated, developers would still be challenged by the creation
of new variants and when features need to be added to or
removed from existing variants. Hence, we intend to enable
the reconfiguration of existing (RG3.a) and the creation of
new variants (RG3.b) by means of feature selections. For
both scenarios, our goal is to provide maximal confidence
that a synthesized variant actually behaves as expected, and
to minimize developer interactions during variant generation.

V. EARLY RESULTS AND VALIDATION

Research Prototype — While we aim at developing a con-
ceptual framework which abstracts from technical details and
tooling issues as far as possible, a concrete research prototype
is required for evaluating our approach. To that end, we have
developed a first version of such a prototype as an Eclipse
plug-in which works on a textual representation of source
code artifacts [37]. For the sake of rapid prototyping, artifact
changes and feature mappings are treated in a line-based
manner. The main purpose of the research prototype in its
current state is to show the general feasibility of our approach.

Refinement of Technical Challenges — Our research proto-
type also helped us to better understand and refine the technical
challenges imposed by our research goals, leading us to the
consequent steps to reach our overall vision.

As for RG1, it became obvious that an automated recording
of feature mappings needs at least basic syntactic information
of the underlying development documents in order to prevent
ill-formed mappings. Inspired by the concept of disciplined
annotations [38], [39], features shall be mapped to nodes of
an Abstract Syntax Tree (AST) instead of source code lines
that do not have to follow a certain structure.

As for RG2, to automatically identify synchronization tar-
gets, we will use product-line analysis techniques [40], [41],
[42] for exploiting the feature contexts of changes as well
as the knowledge which feature selection is implemented by
which variant. However, the actual propagation of changes
between variants may fail due to synchronization conflicts and
needs to be handled by developers. Our goal is to minimize
developer interactions by lifting the handling of synchroniza-
tion conflicts to the level of entire software families instead of
relying on laborious pairwise conflict resolutions as practiced
today. In particular, synchronization conflict resolutions shall
be treated as reusable assets which can be transferred to all
target variants affected by the same conflict.

Concerning RG3, as illustrated in Sec. III, the reconfig-
uration of existing and generation of new variants may be
performed in several ways. Our hypothesis is that optimal
solutions may be only obtained by combining the basic strate-
gies (i.e., additive and subtractive) for a given reconfiguration
case. The synthesized result depends on the selected start
variant (when generating new variants) and on the selected

donor variants (in case of an additive approach). This renders
reconfiguration into a combinatorial optimization problem
which we aim to tackle by using meta-heuristic algorithms
as known from search-based software engineering [43].

Evaluation Plan — The main evaluation goal is to assess to
which extent our approach enables to bridge the gap between
clone-and-own and software product lines, as illustrated in
Fig. 1. That is, we are interested how different factors influence
the degree of automation feasible for variant synchronization.
In particular, we aim to study different percentages of feature
mappings for existing as well as new artifacts. Furthermore,
we are going to evaluate how the number of synchronized
variants and the delay of synchronization affects manual syn-
chronization effort by developers. Finally, we will investigate
whether development teams for variants, development teams
for features, and even combinations thereof are feasible.

The ideal evaluation would be to apply our development
methodology in an industrial context over months or years.
While we envision such a technology transfer and industrial
field study in the long run, an experiment is more feasible for
the near future, in which students or real developers use our
tool support for pre-defined tasks. A control group is supposed
to develop the same functionality with pure clone-and-own or
using product-line technologies, which eventually leads to a
qualitative comparison of the development methodologies.

As for quantitative assessments, we will use product lines
for which the history is available such that we can simulate
their evolution. This is the most common form of evaluation
for clone-and-own approaches [9], [32], [33], [44], [45], [46],
which has the advantage that we have the ground truth for
feature mappings and change synchronizations. A bias might
be introduced by the absence of unintentional divergences
between variants [20], [31], which we aim to mitigate by
injecting such unintentional divergences in a controlled man-
ner [47]. We will also use existing clone-and-own projects
and their version history as experimental subjects [9], [14],
[20], [34]. In this case, however, feature mappings need to
be recovered from source code and commit messages. We
aim to mitigate this potential bias by taking Marlin [12] as
a subject, because the cloned variants contain preprocessor
annotations which indicate feature mappings. Alternatively, we
can use projects which have been migrated to an SPL by other
researchers (cf. ESPLA repository [48]).

VI. CONCLUSION

Effectively managing the evolution of variant-rich soft-
ware systems is still among the main challenges of software
engineering. With our research project VARIANTSYNC, we
tackle this challenge by a fundamentally new methodology. It
combines the flexibility of clone-and-own with the systematic
handling of variability of software product lines. The key idea
is to transparently integrate the central product-line concepts of
features and configurations with variant management facilities
known from version control systems to automatically synchro-
nize a set of evolving variants and to derive new variants.
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