
On the Use of Product-Line Variants as Experimental Subjects
for Clone-and-Own Research: A Case Study
Alexander Schultheiß

alexander.schultheiss@informatik.hu-berlin.de
Humboldt University of Berlin, Germany

Paul Maximilian Bittner
paul.bittner@uni-ulm.de

University of Ulm, Germany

Timo Kehrer
timo.kehrer@informatik.hu-berlin.de

Humboldt University of Berlin, Germany

Thomas Thüm
thomas.thuem@uni-ulm.de
University of Ulm, Germany

ABSTRACT
Software is often released in multiple variants to address the needs
of different customers or application scenarios. One frequent ap-
proach to create new variants is clone-and-own, whose systematic
support has gained considerable research interest in the last decade.
However, only few techniques have been evaluated in a realistic
setting, due to a substantial lack of publicly available clone-and-
own projects which could be used as experimental subjects. Instead,
many studies use variants generated from software product lines for
their evaluation. Unfortunately, the results might be biased, because
variants generated from a single code base lack unintentional diver-
gences that would have been introduced by clone-and-own. In this
paper, we report about ongoing work towards a more systematic
investigation of threats to the external validity of such experimental
results. Using n-way model matching as a representative technique
for supporting clone-and-own, we assess the performance of state-
of-the-art algorithms on variant sets exposing increasing degrees
of divergence. We compile our observations into four hypotheses
which are meant to serve as a basis for discussion and which need
to be investigated in more detail in future research.

CCS CONCEPTS
• Software and its engineering → Software product lines; •
General and reference → Empirical studies; Evaluation.

KEYWORDS
Clone-and-Own, Experimental Evaluation, Model Matching
ACM Reference Format:
Alexander Schultheiß, Paul Maximilian Bittner, Timo Kehrer, and Thomas
Thüm. 2020. On the Use of Product-Line Variants as Experimental Subjects
for Clone-and-Own Research: A Case Study. In 24th ACM International
Systems and Software Product Line Conference (SPLC ’20), October 19–23,
2020, Montréal, QC, Canada. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3382025.3414972

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00
https://doi.org/10.1145/3382025.3414972

1 INTRODUCTION
Today’s software often needs to be released in multiple variants
to meet all customer requirements. Software product lines [3, 9,
28] decrease development costs in the long term and can prevent
variability bugs by reusing commonalities between variants in a
structured manner. However, to reduce time-to-market or because
the need for variability is unknown at the beginning of development,
practitioners frequently rely on an ad-hoc principle known as clone-
and-own [10, 32, 39]. New variants of a software family are created
by copying and adapting an existing variant. While clone-and-
own development does not require an up-front domain analysis,
maintaining a family of cloned variants becomes impractical once
a critical number of variants is reached [1].

Hence, exploring the continuum between software product line
and clone-and-own development has gained considerable interest
in research [1]. Research topics include the synchronization of
cloned variants in the course of evolution [15, 32, 36], the controlled
generation of new variants from existing ones [20, 32], variation
control systems [23, 24], filtered product lines [30, 38], and the
migration of clones to a product line [14, 25, 47].

However, most experimental evaluations of clone-and-own re-
search use product-line variants instead of real code clones as ex-
perimental subjects [14, 24, 25, 47]. Variants generated from prod-
uct lines do not expose unintentional divergences of semantically
equivalent software fragments, which are common for cloned vari-
ants [17, 35, 36]. Therefore, experimental results might be biased
and not generalizable to cloned variants that drift away from each
other over time. We call the introduction of unintentional diver-
gences variant drift. To the best of our knowledge, there is no
systematic investigation of these threats to the external validity of
experimental results obtained on product-line variants.

In this paper, we report about ongoing work towards closing
this research gap. We investigate n-way model matching [31] as a
representative technique for systematically supporting clone-and-
own. N -way matches determine the common elements in a set of
variants, and they are frequently needed as a preparatory step to
migrate a set of cloned variants into a software product line [12, 16,
33, 34, 45, 46]. Based on a standard metric for assessing the quality
of a matching [31], we assess the performance of n-way matching
algorithms of varying complexity on sets of variants generated
from software product lines and created through clone-and-own.1

1The most recent version of the prototype is hosted at https://github.com/
AlexanderSchultheiss/variant-drift. A snapshot of the replication package can be
found under https://doi.org/10.5281/zenodo.3999317

https://doi.org/10.1145/3382025.3414972
https://doi.org/10.1145/3382025.3414972
https://doi.org/10.1145/3382025.3414972
https://github.com/AlexanderSchultheiss/variant-drift
https://github.com/AlexanderSchultheiss/variant-drift
https://doi.org/10.5281/zenodo.3999317

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Schultheiß et al.

The performance is first assessed on the original variants, and we
then simulate variant drift by introducing divergences through
applying language-specific refactorings, observing the impact on
the algorithms’ performance.

In a nutshell, we found that all investigated algorithms perform
better when using product-line instead of clone-and-own variants.
At the same time, there are no apparent differences between the
algorithms when they are evaluated on product-line variants. How-
ever, this changes drastically in the course of simulating variant
drift. After injecting a few divergences into the generated product-
line variants, simple algorithms are significantly outperformed by
more complex ones. Interestingly, we could not observe the same
effect for variants created through clone-and-own. Here, the quali-
tative difference between simple and complex algorithms remains
rather constant in the course of injecting further divergences into
the cloned variants. In summary, we contribute to the body of
knowledge by

• bringing more attention to a potential threat to the validity
of experimental results gathered on product-line variants,

• investigating the impact of variant drift on the empirical
evaluation of techniques for n-way model matching,

• and compiling our observations into four hypotheses that
can serve as a basis for further investigation and discussion.

2 N-WAY MATCHING
Detecting commonalities and differences between cloned software
variants is one of the key requirements for many approaches to
systematically enhancing or supporting clone-and-own develop-
ment [12, 16, 31, 33, 34, 45, 46]. Detecting such commonalities and
differences is typically achieved by calculating a matching among
several input artifacts, commonly referred to as n-way matching.

Aiming at the matching of conceptual source code entities while
abstracting from their textual representation, sophisticated match-
ers work on structured or semi-structured program representa-
tions [7] which can be considered asmodels of a program’s abstract
syntax graph. In this paper, a model is considered to be a set of ele-
ments, where each element comprises a set of properties which are
plain names. For example, in an object-oriented program, elements
may correspond to classes whose fields, methods and associations
to other classes are represented by properties.

Intuitively, a model matching identifies groups of corresponding
elements which can be considered “the same” in a subset of the
set of all input models. Formally, a matching𝑀 = {𝑡1, . . . , 𝑡𝑘 } for 𝑛
input models is a set of matches 𝑡𝑖∈{1,...,𝑘 } = {𝑒1, . . . , 𝑒𝑚𝑖

},𝑚𝑖 ≤ 𝑛,
where each match 𝑡𝑖 is a set containing at most one element from
each distinct input model, and each element is part of exactly one
match. Elements of a match should be equal or highly similar to
each other. If a match comprises only a single element, this element
can be considered to be unique among all input models.

For assessing the quality of a matching, we use the weight metric
proposed by Rubin and Chechik [31], as it does not require an
ideal matching as reference, which is commonly not available for
clone-and-own projects. Given a match 𝑡 = {𝑒1, . . . , 𝑒𝑚}, 𝑚 ≤ 𝑛, of
elements from 𝑛 input models, its weight is given by:

𝑤 (𝑡) =
∑
2≤ 𝑗≤ |𝑡 | 𝑗

2 · 𝑛𝑝
𝑗

𝑛2 · |𝜋 (𝑡) |
, (1)

where 𝑛𝑝
𝑗
denotes the number of properties that occur in exactly 𝑗

elements of the match, and 𝜋 (𝑡) is the set of all distinct properties
in elements of the match. The idea is to assign greater weight
to matches comprising more elements with a higher amount of
common properties. For example, a match gets assigned the highest
weight (i.e., 1), if its elements share the same set of properties,
and if it comprises one element from each model. The weight of
a matching (i.e., the set of matches for the input models) is then
defined as the sum of weights over all matches.

We selected three matching algorithms of varying complexity
in order to investigate variant drift in the context of n-way model
matching. The first algorithm is a naive name-based matcher, which
we refer to as NameBased. It matches exactly those elements of
different models that have the same name. It does not consider the
properties of the elements in any way. We chose this matcher as a
naive baseline for the other two matchers. The second algorithm,
which we refer to as Pairwise, performs sequential two-way match-
ing of the input models using the Hungarian algorithm [19]. To
be independent from input order, Pairwise sorts the input models
descending by size. We chose this approach because matching in
descending order showed the best results in an empirical evaluation
of Rubin and Chechik [31]. The last algorithm, NwM , is a heuristic
n-way matcher developed by Rubin and Chechik [31]. It considers
all elements of all input models at the same time, which increases
its chance to find the best match. A detailed description of how
NwM proceeds can be found in the original work [31]. To the best
of our knowledge, NwM can be considered the state-of-the-art for
n-way model matching.

3 EXPLORATIVE RESEARCH METHOD
We question whether product-line variants are appropriate for
the experimental evaluation of clone-and-own research. As clones
are synchronized on demand [21, 40] they exhibit unintentional
divergences that are not present in product lines. These divergences
could, for example, be introduced through refactoring operations
that are applied during development. Refactoring is a frequently
used technique in programming that aims at improving a program’s
internal structure without altering its external behavior [26].

While refactoring is likely performed in both software product-
line engineering and clone-and-own development, there is a sig-
nificant difference in how it affects individual variants. In clone-
and-own, refactoring operations are directly applied to one, some,
or all of the cloned variants. This can lead to unintentional diver-
gences, i.e., variant drift. Typically, the amount of unintentional
divergences increases over time. The cloned variants which are
identical at the beginning are drifting away from each other. In soft-
ware product-line engineering, implementation artifacts are reused
across variants [2, 8]. Hence, applied refactorings are instantly syn-
chronised to all variants containing the refactored artifacts [22, 37].

In our controlled experiment presented in the next section, we
want to investigate how increasing variant drift among product-
line variants affects the quality of matchings calculated by n-way
matchers. Therefore, we first describe the refactoring operations
we use for injecting divergences in Section 3.1. In Section 3.2, we
discuss how we compare matchings of model sets with different
degrees of variant drift.

On the Use of Product-Line Variants as Experimental Subjects for Clone-and-Own Research: A Case Study SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

Table 1: Distribution of the Most Frequent Refactoring Op-
erations Across 200 Projects Reported by Vassallo et al. [42]

Refactoring Operation Count Percentage
Rename Method 4, 912 29.48%
Move Field 3, 400 20.41%
Move Method 2, 031 12.19%
Extract Interface 1, 928 11.57%
Rename Class 1, 468 08.81%
Other Refactorings 2, 921 17.53%
Total 16, 660 100.00%

3.1 Injection of Unintentional Divergences
Numerous refactoring operations have been proposed in the litera-
ture, most notably the compilation of object-oriented refactorings
presented by Fowler [13]. However, not all of them are applied
equally often in practice. Recently, Vassallo et al. [42] analyzed
refactoring practices in 200 open-source projects written in Java
and found significant differences w.r.t. the frequency of their ap-
plication. The five most frequent refactoring operations and their
frequency of application across all 200 projects are shown in Table 1.

We derive four refactoring operations from these five most fre-
quent refactorings, so that they can be applied to element-property
models as used in this paper. Each refactoring is applied to a single
model. Hence, a refactoring operation does not change multiple
models simultaneously.

• Rename Element renames one single element and corresponds
to Rename Class. The operation also renames all properties
of all elements that contain the same name as a substring, to
account for references.

• Rename Property changes the name of one property and
corresponds to Rename Method.

• Move Property deletes a property from a source element and
adds it to a target element. The operation corresponds to
Move Field/Method. It can only be applied if the target element
does not have a property with the same name.

• Extract Interface receives a set of elements as input that have
at least one common property. The operation creates a new
element with a randomly generated name and copies or
moves all common properties of the input elements to this
new element. The decision between copying and moving the
properties to the extracted interface is made randomly, but
all properties are handled in the same way for one extraction.
Having two different strategies is motivated by representing
both interfaces and normal classes.

3.2 Comparing Matching Quality
The weight metric defined by Rubin and Chechik [31], shown in
Equation 1, can be summed up for all matches in a matching to get
the matching’s quality for a given set of input models. However,
it should not be used to compare matchings for different sets of
models, as the sum of weights is not normalized. In other words,
the weight of a matching is an absolute measure which correlates
with the size of the models, the similarity between elements, and
the number of possible matches. Hence, we assess the quality of a

matching𝑀 for a set of models ℳ based on its normalized weight
and the highest possible weight for a matching of the modelsℎ(ℳ) :

|𝑤 (𝑀) | := 𝑤 (𝑀)
ℎ(ℳ) . (2)

A normalization of the weight 𝑤 (𝑀) is necessary to make it
comparable across different subjects. However, finding the required
optimal solution ℎ(ℳ) requires the consideration of all possible
matches, and the number of possible matches for 𝑛 models is
(∏𝑛

𝑖=1 (𝑘𝑖 + 1)) − 1, where 𝑘𝑖 denotes the number of elements in
the 𝑖-th model [31]. Thus, it is not feasible to calculate the optimal
solution in a brute-force manner. Instead, we propose to calculate
an upper bound for the highest possible weight of a matching.

The basic idea behind our estimation of an upper bound is that,
as opposed to finding a globally optimal matching, it is relatively
easy to find the best match for a specific element. To that end, for
a given element, we first iterate over all models and select one
element from each model that has the highest weight with respect
to the given element. Then, we sort the selected elements by their
weight in descending order. Lastly, we sequentially match the given
element with the selected candidates. A candidate is only added to
the match if this increases the weight of the match. This way, we
receive the match with the highest weight for each element in the
input models. The process is repeated for all elements and the final
upper bound ℎ′(ℳ) is then calculated as the sum over the weights
of the collected matches. Note that these matches do not represent a
valid matching, because a particular element can be part of several
matches. Moreover, ℎ′(ℳ) is an upper bound, because it considers
the match with the highest weight of each element. In conclusion,
we use ℎ(ℳ) B ℎ′(ℳ) in Equation 2.

4 CONTROLLED EXPERIMENT
We instantiate the general research methodology presented in the
previous section in a controlled experiment. We first outline the
experimental setup, and then continue by presenting our results.

4.1 Experimental Subjects
We use models of product-line variants and models of variants
created through clone-and-own as experimental subjects.

The Pick and Place Unit (PPU) [4, 27, 43] and the Barbados Car
Crash Crisis Management System (bCMS) [5, 6, 41] consist of vari-
ants generated from software product lines. Both were recently
used by Reuling et al. [29] as a benchmark set for the empirical
evaluation of their n-way model merging technique. The PPU is
a laboratory plant comprising 16 application scenarios that differ
in mechanical, electrical, and software setup of the plant. System
models describing the behavior of these scenarios were presented
by Vogel-Heuser et al. [44]. The bCMS was developed to support the
distributed crisis management of accidents on public roadways. For
the purpose of our evaluation, we only focus on the object-oriented
implementation models of the system [6]. These models include
both functional and non-functional variability of the system.

The third subject comprises variants from a software family
called Apo-Games. The variants were developed with the clone-and-
own approach [11, 32] and were recently presented by Krüger et al.
as a challenge for variability mining [18]. We use models extracted
from 20 Java variants presented in that challenge.

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Schultheiß et al.

Table 2: Probabilities of Specific Refactoring Operations in
Two Different Refactoring Setups

Refactoring Operation Probability
Setup-A Setup-B

Rename Element 36.05% -
Rename Property 10.77% -
Move Property 39.85% 74.94%
Extract Interface 13.33% 25.06%

4.2 Simulation of Variant Drift
For the simulation of variant drift (i.e., injection of unintentional
divergences), we consider the two refactoring setups presented
in Table 2. Each setup assigns probabilities to the refactoring op-
erations presented in Section 3.1. In Setup-A, all four refactoring
operations are applied. In Setup-B, only Move Property and Extract
Interface are applied. We introduced Setup-B, where only restructur-
ing operations are performed, in order to mitigate any bias towards
the matchers that might be caused by applying rename operations.
The probabilities of the refactorings are calculated based on their
frequency of use in real-world software development, as empirically
determined by Vassallo et al. [42] (see Section 3.1). The probabilities
are normalized so that their sum is 100%.

For each setup, we inject divergences into the experimental
subjects by applying increasing numbers of refactoring operations,
from 0 to 400 in steps of 10 for each subject. First, for a given
number of refactorings, the types of the refactorings are chosen
randomly according to the probabilities in Table 2. Then, for each
refactoring, a model is selected randomly, and from it a random
yet suitable target within a model for applying the refactoring
operation. Subsequent refactorings on the same model are applied
in a non-overlapping manner to ensure that they cause a steadily
increasing amount of divergences. Rename operations use randomly
generated and unique names. After the given number of refactorings
has been applied, the refactored models are saved and the process
repeats by starting with the original, unrefactored models.

For each amount of refactorings 𝑛 ∈ {0, 10, 20, . . . , 400}, we gen-
erate 30 different sets of drifted variants. We repeat the same for
both setups. In summary, we obtain 30 · 41 · 2 = 2, 460 sets of clones
for each of the original experimental subjects.

4.3 Results
Figure 1 presents the average matching quality of the three model
matchers presented in Section 2 on the sets of drifted models of
Setup-A. The average matching quality for a specific number of
refactorings is given as percentage of the weights’ upper bound,
calculated by dividing the average weight of the matchings by the
average upper bound of the weight (see Section 3.2).

For matchings of models without variant drift (i.e., number of
refactorings = 0), we notice differences in the achieved weights
depending on the experimental subject. While all matchers achieve
similar quality for unrefactored models of the PPU , NwM provides
visibly better matchings for bCMS and Apo-Games. Surprisingly,
NameBased achieves a better result on Apo-Games than the more
complex Pairwise. This could indicate that Pairwise suffers more

from the initial divergence in the clone-and-ownmodels thanName-
Based. Another observation is that all matchers perform worse on
the unrefactored models of Apo-Games than on the unrefactored
models of PPU and bCMS. More specifically, the matchers achieve
only around 6% to 6.5% of the boundary weight on Apo-Games,
while achieving up to around 8% on PPU and bCMS. This might
suggest that the clone-and-own variants of Apo-Games are more
difficult to match than the product-line variants of PPU and bCMS.

With an increasing number of applied refactorings, two different
effects become visible, based onwhether the refactored models stem
from product-line or clone-and-own models. For PPU and bCMS,
the weights achieved by the three matchers start to diverge quickly.
While the normalized weight of NwM increases, the weight of the
most simple matcher,NameBased, decreases drastically. At the same
time, the weight of Pairwise increases slightly. In contrast, there
appears to be no such effect on Apo-Games. Here, the differences
between weights of all matchers remain (mostly) constant, and the
weight of all three matchers decreases slowly.

The results on the sets generated under Setup-B are presented
in Figure 2. While the weights achieved by NwM and Pairwise
are highly similar to the ones achieved on Setup-A, we notice a
difference for NameBased. For the refactored models of the PPU , the
normalized weight of NameBased first decreases and then increases
again after around 150 refactorings. This effect can also be observed
on bCMS, although in a weaker form. On Apo-Games, there is no
visible difference to the results of Setup-A.

5 DISCUSSION
Based on the results of our first exploratory study, we formulate four
hypotheses on how different kinds and degrees of unintentional
divergences can affect the performance of techniques supporting
clone-and-own development.

Hypothesis 1

Techniques supporting clone-and-own perform better on
product-line variants than on clone-and-own variants.

As product-line variants are inherently consistent, model matchers
do not have to rely on complex comparisons because elements that
should be matched are often equal. We suspect that this effect can
also be observed for other techniques supporting clone-and-own
development. As shown in Figure 1 and 2, all matchers appear to
perform slightly better on the product-lines PPU and bCMS than
on Apo-Games, if no or only few refactorings have been applied.

Hypothesis 2

Sophisticated techniques supporting clone-and-own yield
better results than simple ones.

Advanced methods are mostly developed to break the limitations
of ad-hoc or simple solutions. For any amount of refactorings and
for each of our experimental subjects, the weight of matchings
calculated by NwM is higher than the weights obtained by more
simple matchers.

On the Use of Product-Line Variants as Experimental Subjects for Clone-and-Own Research: A Case Study SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

Figure 1: Matching Quality With All Refactorings (Setup-A)

0 50 100 150 200 250 300 350 400
Number of Refactorings

5

6

7

8

9

10

W
ei

gh
t [

%
 o

f U
pp

er
 B

ou
nd

]

PPU
NwM
Pairwise
NameBased

0 50 100 150 200 250 300 350 400
Number of Refactorings

5

6

7

8

9

10

W
ei

gh
t [

%
 o

f U
pp

er
 B

ou
nd

]

bCMS
NwM
Pairwise
NameBased

0 50 100 150 200 250 300 350 400
Number of Refactorings

5

6

7

8

9

10

W
ei

gh
t [

%
 o

f U
pp

er
 B

ou
nd

]

Apo-Games
NwM
Pairwise
NameBased

Figure 2: Matching Quality With Only Structural Refactorings (Setup-B)

0 50 100 150 200 250 300 350 400
Number of Refactorings

5

6

7

8

9

10

W
ei

gh
t [

%
 o

f U
pp

er
 B

ou
nd

]

PPU
NwM
Pairwise
NameBased

0 50 100 150 200 250 300 350 400
Number of Refactorings

5

6

7

8

9

10

W
ei

gh
t [

%
 o

f U
pp

er
 B

ou
nd

]

bCMS
NwM
Pairwise
NameBased

0 50 100 150 200 250 300 350 400
Number of Refactorings

5

6

7

8

9

10

W
ei

gh
t [

%
 o

f U
pp

er
 B

ou
nd

]

Apo-Games
NwM
Pairwise
NameBased

Hypothesis 3

Increasing variant drift in product-line variants reveals dif-
ferences in the quality of results delivered by techniques
supporting clone-and-own.

With this hypothesis, we argue that the phenomenon of variant
drift can have a strong impact on the behavior of the techniques.
While matchers perform equally well for product-line variants (0
refactorings), their performances diverge when simulating variant
drift. This effect distinguishes product-line variants (PPU, bCMS)
from clones (Apo-Games), where increasing variant drift does not
reveal more differences.

Hypothesis 4

Increasing variant drift in clones does not reveal further
differences in the quality of results delivered by techniques
supporting clone-and-own.

Clones from clone-and-own development presumably already ex-
hibit variant drift and additional refactoring does not change the
relative difference in the quality of results any further. More com-
plex algorithms perform better than simple ones, regardless of the
number of additional refactorings. In our experiments, refactorings
have not lead to any significant effect for Apo-Games.

6 SUMMARY AND FUTUREWORK
At the example of n-way model matching, we investigated how
variant drift (i.e., the introduction of unintentional divergences in
variants) might affect the empirical evaluation of techniques for
the systematic support of clone-and-own development. To simu-
late variant drift, we systematically applied increasing amounts of
refactoring operations to variants of three different experimental
subjects, comprising two sets of models stemming from software
product lines, and one set of models stemming from a clone-and-
own system. Based on our results, we proposed four hypotheses on
how variant drift might impact the empirical evaluation of other
techniques in clone-and-own research.

Clearly, given the early state of our research reported above,
further investigations are required. We want to investigate to which
extent variant drift occurs in real world clone-and-own projects,
and we plan to conduct additional experiments through which we
can either confirm, refine, or even reject our four hypotheses. For
instance, we want to extend our evaluation to more experimental
subjects, and assess how other techniques applied in clone-and-own
development are affected by variant drift. Nonetheless, considering
our current results, we call for more realistic experimental subjects
that can be used as benchmarks for improving the evaluation of
clone-and-own research and reducing bias in external validity.

ACKNOWLEDGMENTS
This work has been supported by the German Research Foundation
within the project VariantSync (TH 2387/1-1 and KE 2267/1-1).

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Schultheiß et al.

REFERENCES
[1] Michał Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Thomas

Schmorleiz, Ralf Lämmel, S, tefan Stănciulescu, Andrzej Wąsowski, and Ina Schae-
fer. 2014. Flexible product line engineeringwith a virtual platform. In International
Conference on Software Engineering. 532–535.

[2] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines.

[3] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines: Concepts and Implementation. Springer.

[4] Johannes Bürdek, Timo Kehrer, Malte Lochau, Dennis Reuling, Udo Kelter, and
Andy Schürr. 2016. Reasoning about product-line evolution using complex
feature model differences. Autom. Softw. Eng. 23, 4 (2016), 687–733. https:
//doi.org/10.1007/s10515-015-0185-3

[5] Afredo Capozucca, Betty Cheng, Geri Georg, Nicolas Guelfi, Paul Istoan, Gunter
Mussbacher, Adam Jensen, Jean-Marc Jézéquel, Jörg Kienzle, Jacques Klein, et al.
2011. Requirements definition document for a software product line of car
crash management systems. ReMoDD repository, at http://www. cs. colostate.
edu/remodd/v1/content/bcms-requirements-definition (2011).

[6] Alfredo Capozucca, Betty Cheng, Nicolas Guelfi, and Paul Istoan. 2011. OO-SPL
modelling of the focused case study. In Comparing Modeling Approaches (CMA)
International Workshop affiliated with ACM/IEEE 14th International Conference on
Model Driven Engineering Languages and Systems (CMA@ MODELS2011).

[7] Guilherme Cavalcanti, Paulo Borba, Georg Seibt, and Sven Apel. 2019. The Impact
of Structure on Software Merging: Semistructured Versus Structured Merge. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1002–1013.

[8] Krzysztof Czarnecki and Ulrich Eisenecker. 2000. Generative Programming: Meth-
ods, Tools, and Applications.

[9] Krzysztof Czarnecki and Ulrich W. Eisenecker. 2000. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley.

[10] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. 25–34. https://doi.org/10.1109/CSMR.2013.13

[11] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An exploratory study of cloning in industrial
software product lines. In 2013 17th European Conference on Software Maintenance
and Reengineering. IEEE, 25–34.

[12] Slawomir Duszynski. 2015. Analyzing similarity of cloned software variants using
hierarchical set models. Fraunhofer IRB Verlag.

[13] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley.

[14] Christian Kästner, Alexander Dreiling, and Klaus Ostermann. 2013. Variability
mining: Consistent semi-automatic detection of product-line features. IEEE
Transactions on Software Engineering 40, 1 (2013), 67–82.

[15] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. 2014. Propagation of soft-
ware model changes in the context of industrial plant automation. at-
Automatisierungstechnik 62, 11 (2014), 803–814.

[16] Benjamin Klatt and Martin Küster. 2013. Improving product copy consolidation
by architecture-aware difference analysis. In Proceedings of the 9th international
ACM Sigsoft conference on Quality of software architectures. ACM, 117–122.

[17] Benjamin Klatt, Martin Küster, and Klaus Krogmann. 2013. A graph-based analy-
sis concept to derive a variation point design from product copies. In International
Workshop on Reverse Variability Engineering. 1–8.

[18] Jacob Krüger, Wolfram Fenske, Thomas Thüm, Dirk Aporius, Gunter Saake, and
Thomas Leich. 2018. Apo-games: a case study for reverse engineering variability
from cloned Java variants. In Proceedings of the 22nd International Systems and
Software Product Line Conference-Volume 1. 251–256.

[19] HaroldW Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83–97.

[20] Raúl Lapeña, Manuel Ballarin, and Carlos Cetina. 2016. Towards clone-and-own
support: locating relevant methods in legacy products. In International Systems
and Software Product Line Conference. 194–203.

[21] Daniela Lettner and Paul Grünbacher. 2015. Using Feature Feeds to Improve
Developer Awareness in Software Ecosystem Evolution. 11:11–11:18. https:
//doi.org/10.1145/2701319.2701331

[22] Jörg Liebig, Andreas Janker, Florian Garbe, Sven Apel, and Christian Lengauer.
2015. Morpheus: Variability-Aware Refactoring in the Wild. 380–391.

[23] Lukas Linsbauer, Thorsten Berger, and Paul Grünbacher. 2017. A classification
of variation control systems. ACM SIGPLAN Notices 52, 12 (2017), 49–62.

[24] Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed. 2017.
Variability extraction and modeling for product variants. Software & Systems
Modeling 16, 4 (2017), 1179–1199.

[25] Jabier Martinez, Tewfik Ziadi, Tegawendé F Bissyandé, Jacques Klein, and Yves
Le Traon. 2015. Bottom-up adoption of software product lines: a generic and
extensible approach. In International Software Product Line Conference. 101–110.

[26] William F. Opdyke. 1992. Refactoring Object-Oriented Frameworks. Ph.D. Disser-
tation. USA.

[27] Christopher Pietsch, Udo Kelter, Timo Kehrer, and Christoph Seidl. 2019. Formal
foundations for analyzing and refactoring delta-oriented model-based software
product lines. In Proceedings of the 23rd International Systems and Software Product
Line Conference-Volume A. 207–217.

[28] Klaus Pohl, Günter Böckle, and Frank J van Der Linden. 2005. Software product line
engineering: foundations, principles and techniques. Springer Science & Business
Media.

[29] Dennis Reuling, Malte Lochau, and Udo Kelter. 2019. From Imprecise N-Way
Model Matching to Precise N-Way Model Merging. Journal of Object Technology
18, 2 (2019).

[30] Dennis Reuling, Christopher Pietsch, Udo Kelter, and Timo Kehrer. 2020. Towards
projectional editing for model-based SPLs. In Proceedings of the 14th International
Working Conference on Variability Modelling of Software-Intensive Systems. 1–10.

[31] Julia Rubin and Marsha Chechik. 2013. N-way model merging. In proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering. ACM, 301–311.

[32] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. 2013. Managing cloned
variants: a framework and experience. In Proceedings of the 17th International
Software Product Line Conference. ACM, 101–110.

[33] Uwe Ryssel, Joern Ploennigs, and Klaus Kabitzsch. 2012. Automatic library
migration for the generation of hardware-in-the-loopmodels. Science of Computer
Programming 77, 2 (2012), 83–95.

[34] Alexander Schlie, Sandro Schulze, and Ina Schaefer. 2020. Recovering variability
information from source code of clone-and-own software systems. In Proceedings
of the 14th International Working Conference on Variability Modelling of Software-
Intensive Systems. 1–9.

[35] Thomas Schmorleiz. 2015. An Annotation-Centric Approach to Similarity Manage-
ment. Master’s thesis. Universität Koblenz-Landau, Germany.

[36] Thomas Schmorleiz and Ralf Lämmel. 2014. Similarity Management via History
Annotation. In Seminar Advanced Techniques and Tools for Software Evolution.
Dipartimento di Informatica Università degli Studi dell’Aquila, L’Aquila, Italy,
45–48.

[37] Sandro Schulze, Thomas Thüm, Martin Kuhlemann, and Gunter Saake. 2012.
Variant-Preserving Refactoring in Feature-Oriented Software Product Lines. 73–
81.

[38] Felix Schwäger and Bernhard Westfechtel. 2016. SuperMod: tool support for
collaborative filtered model-driven software product line engineering. In Interna-
tional Conference on Automated Software Engineering. IEEE, 822–827.

[39] Ştefan Stănciulescu, Sandro Schulze, and Andrzej Wąsowski. 2015. Forked and in-
tegrated variants in an open-source firmware project. In International Conference
on Software Maintenance and Evolution. IEEE, 151–160.

[40] Stefan Stănciulescu, Sandro Schulze, and Andrzej Wąsowski. 2015. Forked and
Integrated Variants in an Open-Source Firmware Project. 151–160. https://doi.
org/10.1109/ICSM.2015.7332461

[41] Gabriele Taentzer, Timo Kehrer, Christopher Pietsch, and Udo Kelter. 2018. A
Formal Framework for Incremental Model Slicing. In International Conference on
Fundamental Approaches to Software Engineering. Springer, Cham, 3–20.

[42] Carmine Vassallo, Giovanni Grano, Fabio Palomba, Harald C. Gall, and Alberto
Bacchelli. 2019. A large-scale empirical exploration on refactoring activities in
open source software projects. Science of Computer Programming 180 (2019), 1 –
15. https://doi.org/10.1016/j.scico.2019.05.002

[43] Birgit Vogel-Heuser, Alexander Fay, Ina Schaefer, and Matthias Tichy. 2015.
Evolution of software in automated production systems: Challenges and research
directions. Journal of Systems and Software 110 (2015), 54–84. https://doi.org/10.
1016/j.jss.2015.08.026

[44] Birgit Vogel-Heuser, Christoph Legat, Jens Folmer, and Stefan Feldmann. 2014.
Researching evolution in industrial plant automation: Scenarios and documenta-
tion of the pick and place unit. Technical Report. Institute of Automation and
Information Systems, Technische Universität München.

[45] David Wille, Sandro Schulze, and Ina Schaefer. 2016. Variability mining of
state charts. In Proceedings of the 7th International Workshop on Feature-Oriented
Software Development. ACM, 63–73.

[46] David Wille, Sandro Schulze, Christoph Seidl, and Ina Schaefer. 2016. Custom-
tailored variability mining for block-based languages. In 2016 IEEE 23rd Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER),
Vol. 1. IEEE, 271–282.

[47] Tewfik Ziadi, Christopher Henard, Mike Papadakis, Mikal Ziane, and Yves
Le Traon. 2014. Towards a language-independent approach for reverse-
engineering of software product lines. In Proceedings of the 29th Annual ACM
Symposium on Applied Computing. ACM, 1064–1071.

https://doi.org/10.1007/s10515-015-0185-3
https://doi.org/10.1007/s10515-015-0185-3
https://doi.org/10.1109/CSMR.2013.13
https://doi.org/10.1145/2701319.2701331
https://doi.org/10.1145/2701319.2701331
https://doi.org/10.1109/ICSM.2015.7332461
https://doi.org/10.1109/ICSM.2015.7332461
https://doi.org/10.1016/j.scico.2019.05.002
https://doi.org/10.1016/j.jss.2015.08.026
https://doi.org/10.1016/j.jss.2015.08.026

	Abstract
	1 Introduction
	2 N-Way Matching
	3 Explorative Research Method
	3.1 Injection of Unintentional Divergences
	3.2 Comparing Matching Quality

	4 Controlled Experiment
	4.1 Experimental Subjects
	4.2 Simulation of Variant Drift
	4.3 Results

	5 Discussion
	6 Summary and Future Work
	Acknowledgments
	References

